Synchrony in climate and biological response within and between the Benguela and California Current Ecosystems

Bryan A. Black Associate Professor Department of Marine Science

Marine Science Institute University of Texas at Austin Port Aransas, Texas

Collaborators

United States

Peter van der Sleen Bill Sydeman Marisol Garcia-Reyes Sarah Ann Thompson Ryan Rykaczewski Steven Bograd

Carl van der Lingen Tarron Lamont Rob Crawford Lynne Shannon

environmental affairs

Department: Environmental Affairs **REPUBLIC OF SOUTH AFRICA**

agriculture, forestry & fisheries

FARALLON INSTITUTE

Department: Agriculture, Forestry and Fisheries REPUBLIC OF SOUTH AFRICA

Funding

National Science Foundation South African Dept. of Environmental Affairs

Splitnose rockfish (Sebastes diploproa)

80+ yrs old 300 m depth Live-collected 1980 - 2008

Splitnose chronology: 72 otoliths

Seven time series

Growth-increment chronologies

splitnose rockfish planktivorous

yelloweye rockfish piscivorous

Chinook salmon piscivorous

Egg lay date and survivorship

common murre piscivorous

photo: Ron LeValley, PRBO

Cassin's auklet planktivorous

PC1 for fish and bird time series

Upwelling seasonality

Early season environment explains biotic response

 PC_{env} from winds, temps (winter / early spring signal) PC_{bio} from 9 time series (56% variability explained)

CA Current – Benguela comparison

Collaborative Research: Climate Change and Upwelling – Comparative Analysis of Current & Future Responses of the California and Benguela Ecosystems (project CalBenJI)

University of TX University of SC Farallon Institute NOAA SWFSC

South African Dept. of Environmental Affairs South African Dept. of Ag., Forestry, and Fisheries University of Cape Town

Lambert's Bay South Africa, March 2015

Physical and biological data

Upwelling indices: Lamont *et al.* in review daily NCEP-DOE Reanalysis 2 wind vectors monthly sums of all positive Ekman transport southern Benguela: 29-36°S

Biological data:

Seabird

lay date molt date breeding success survival population estimates

Fish

condition indices population estimates

South Africa

ape Town

Physical and biological data

African penguin breeding success (chicks fledged per pair) survival (portion surviving)

Breeding success and anchovy

Adult survival and sardine

Benguela anchovy

Cape anchovy spawn Sep-Mar (peak Nov, Dec) on Agulhas Bank peak recruitment Jan-Mar on west coast

Benguela anchovy

Southern Benguela upwelling and anchovy recruitment

Integration: DiLorenzo and Ohman 2013 PNAS

Benguela anchovy

Add autocorrelation to upwelling ("integrate")

Year

Threshold effects (non-stationarity)

West Coast anchovy biomass

Threshold effects (non-stationarity)

West Coast anchovy biomass

Predicted recruitment ($R^2 = 0.84$)

Predicted recruitment

1) Integration of upwelling signals 2) Threshold response of west biomass

California Current anchovy biomass

MacCall et al. 2016. Fish. Res. Recent collapse of northern anchovy off CA

PC1 for fish and bird time series

California Current anchovy biomass

Does integrating upwelling / winter pattern (or any month of upwelling) help explain anchovy?

Maybe something with sea level at San Diego

Anchovy and winter sea level

Winter blocking high

Correlation between winter upwelling and sea level pressure

Winter North Pacific High correlates to...

Marine-terrestrial coherence

Running standard deviation

winter NPH

Running standard deviation

Running pairwise correlations

Running pairwise correlations

Increasing NPH "fingerprint"

Anchovy and winter sea level

Anchovy and winter sea level variance

16 blue oak chronologies

Blue oak synchrony

Mean pairwise correlation among chronologies (20 yr window)

Low synchrony, low variance

Anchovy: deeper time

Baumgartner et al. 1992. CalCOFI Rep. Vol. 33

Blue oak synchrony

Mean pairwise correlation among chronologies (20 yr window)

Low synchrony, low variance, "calm and cool"

CA Current – Benguela comparison

Tools for environmental analysis

"Integration" Thresholds Role of climate variability vs. mean state

Differences between Benguela and California anchovy response?

Sampling differences High interannual variability of CA winter pattern Temporal scale of environmental analysis (daily/weekly better?)