

Recent trends in the Peruvian Coastal Upwelling Ecosystem and implications for the anchovy habitat

<u>Dimitri Gutiérrez</u>, Carlos Romero, Dante Espinoza, Criscely Luján, Luis Vásquez, Michelle Graco, Carlos Quispe, David Correa, Jorge Tam, Vincent Echevin & Ricardo Oliveros

dgutierrez@imarpe.gob.pe

6-11 March 2017 Victoria, BC, Canada

Large scale and regional forcing of the PCUE

Colors: Chlorophyll-a

Lines:
Oxygen content
(micromoles per L) at
100 m depth

Winds, productivity and insolation in the PCUE

> 180° gap between anual cycles of PP and upwelling intensity. Stronger winds in winter/ spring deepen de mixing layer and enhance osffshore advection of coastal waters.

First-generation regional models predict a decrease of PP and anchovy recruitment under climate change scenarios

A- Differences in surface wind intensity between the 4xCO2 and PI scenarios during summer according to the global climate model LMDz (Bel Madani et al., 2013). **B-** Cross-shore vertical structure of temperature and salinity, respectively, at 10°S (Echevin et al, 2012). **C-** Anchovy larvae retention rates (% of individuals) in nursery areas, in the 'Northern' (4-16°S), 'Central' (16-24°S), and 'Southern' (24-40°S) areas (Brochier et al., 2013).

Paleo-evidence of ecosystem and anchovy flucuations

Increased export production and local biomass of anchovy during global warm periods have been inferred from Peruvian sediment records

Salvatteci, 2013

Data

- Shipboard oceanographic parameters and piers' SST records from IMARPE and other since the 1960s.
- Reynolds SST database (1984 to 2014), 0.5° resolution.
- Multiscale UltraHigh Resolution MUR SST analysis (https://podaac.jpl.nasa.gov) (2003 to 2016), 4-km res, for developing crossshore thermal front /gradient calculations
- > SLA records (AVISO) at 95°W in the Equator and along the Peruvian coast (1994 - 2016), 0.25° res.
- > SEAWIFS and MODIS surface chlorophyll-a concentrations, computed at 4-km res. A blended time-series was developed (1997 – 2014), by adjusting from the overlap period between both series
- > Also, a Quickscat + Ascat blended record was developed for coastal winds

20

SST trends (pier records and Reynolds)

1970

2000

SST trends (°C decade⁻¹) on the Reynolds database (1984 – 2016)

Left: pier records; significant linear fits are over-imposed on the respective periods until 2010 (Gutiérrez et al., 2011), warming after 2010, specially in the south.

Results – Pier SST trends and p-values (2010 – 2016)

Location	All	123 (s)	456 (f)	789 (w)	10-12(sp)
Paita	ns	(-) <0.05	(-) <0.05	(+) < 0.01	(+) < 0.01
Chicama	(+) < 0.05	ns	ns	(+) < 0.05	(+) < 0.01
Chimbote	(+) ns	ns	ns	(+) < 0.01	(+) < 0.01
Callao	(+) < 0.05	ns	ns	(+) ns	(+) < 0.01
Pisco	ns	(-) <0.05	ns	(+) < 0.01	(+) < 0.01
San Juan	(+) < 0.05	ns	ns	(+) < 0.01	(+) < 0.01
llo	(+) < 0.05	ns	ns	(+) < 0.01	(+) < 0.01

Coastal winds (0 - 40 km; Quickscat+Ascat)

- ➤ No significant changes in **summer** or **fall** for both the Northern Region and the Central Region
- For the Central Region, a declining trend since 2007/2008 for winter and spring.
- For the Northern Region, a declining trend since 2007/2008 for winter.

Talara (04°30'S)

temperati

Spectral power on filtered (>150 d) time series

Since ca. 2008:

-21

- 20 - 19

- 18 - 17

- 16 - 15

- positive trend of SLA in Galapagos and off Peru
- More frequent SLA peaks by fall
- > stronger intra-seasonal signal at the 100 -150 d band
- > stronger variability of vertical thermal structure off Peru

Callao (12°S)

After ca.2008 there is a negative trend in the distance of the SST front (05 - 14°S). Negative trends stand for almost all regions and all seasons

Cross-shore SST gradient intensity

Surface Chl-a trends (1997 – 2016, mg m⁻³ decade⁻¹)

- Latitudinal and onshore-offshore gradients in characterize the surface Chl-a variability
- No significant trend for surface chl-a in the Northern area, while positive trends are evident for the Central-Southern area
- Multiannual trends vary by season (e.g fall vs spring)

Surface Chl-a trends (1997 – 2015, mg m⁻³ decade⁻¹)

- Positive trend for Central-South is supported by spring and winter periods (weaker wind stress and turbulence?)
- Need to take into account sensor sampling for winter
- Both areas tend to exhibit a different behavior since ca.
 2008.

Implications for the anchovy habitat

- Anchovy pre-recruits appear to be more sensitive to environmental conditions, with temperature as the main limiting factor.
- ➤ Limiting factors also vary by latitudinal region:
 - For recruits/adults, salinity (related with the approach of equatorial and oceanic waters) is an important limiting factor in the NC region, and chl-a is the most limiting factor for adults in the CS region

Seasonal changes of the lir	niting factor for the anchovy
potential habitat	

Stage	Variable	Rank
	SST	11.69 °C – 18 °C
Due ne envite	SSS	34.80 UPS - 35.15 UPS
Pre-recruits	CL	0.45 mg/m3 – 12.88 mg/m3
	OXY	1.20 m – 57.54 m
	SST	12.24°C – 25.34 °C
Dogwite	SSS	34.65 UPS - 35.15 UPS
Recruits	CL	0.43 mg/m3 – 20.42 mg/m3
	OXY	0.85 m – 72.44 m
	SST	12.19 °C – 25.70 °C
Adults	SSS	34.50 UPS – 35.20 UPS
Adults	CL	0.35 mg/m3 - 28.18 mg/m3
	OXY	0.98 m – 107.15 m

Anchovy Niche Ranges by Developmental Stage (Luján & Oliveros, this conference)

- As the SST front gets closer to the coast in the NC region, less suitable habitat remains for pre-recruits; but also higher salinity values (associated with oceanic waters) are likely near the coast, affecting later populations stages.
- > On other hand, increase of chl-a in the CS region favors the expansion of the anchovy hábitat.

Summary and concluding remarks

- Several trends emerge since about 2008/09:
 - The multidecadal cooling along the Central and Southern Peruvian coast since about mid-70's tend to weaken, with warming in the latest years, in parallel with a positive trend of SLA along the coast.
 - Coastal upwelling-favorable winds exhibit a slight decrease, particularly in winter and spring.
 - The distance to the coast of the SST front (Northern to Southern Peru) shows a negative trend, with a larger reduction in autumn, suggesting warm/oceanic waters get closer to the coast.
 - The offshore-onshore SST gradient exhibits a slight negative trend off Central Southern Peru, supporting the idea of weaker upwelling intensity in this region.
- For chlorophyll-a surface concentrations, multidecadal positive trends previously described (e.g. Gutiérrez et al., 2011) are only sustained in the Central-South area based on satellite observations particularly for the last decade.
- These observations imply changes in the potential habitat distribution for plankton and nekton species. For anchovy, observed recent variations of the aggregation patterns, towards a more coastal distribution, are consistent with these oceanographic changes.
- Given recent changes in SST/upwelling and chl-a, a posible spatial shift of the 'OEW' (from the NC to the CS region) should be further explored, affecting recruitment and other biological attributes of the species.