

A full cycle anchovy & sardine model for the N. Aegean Sea

Gkanasos A.

Tsiaras K., Somarakis S., Giannoulaki M.

Machias A., Schismenou E., Petihakis G.

G. Triantafyllou

N. Aegean supports the main anchovy sardine stocks in the Mediterranean

N. Aegean increased productivity

- river inputs
- Black Sea Water inflow

POSEIDON operational atmospheric model

Hydrodynamic model POM (Blumberg and Mellor, 1983)

Biogeochemical model ERSEM (Baretta et al., 1995)

Suite of Models

Organic matter, nutrients

LTL model

Currents, Temperature,

Zooplankton

Bioenergetic model

Population model

movement model

Bioenergetics

Wisconsin bioenergetics framework

Consumption

Respiration

Egg production

Excretion

Egestion

Specific dynamic action

Movement

Restricted area search

$$|\vec{V}_{gradient}| = \vec{V}_{current} + \vec{V}_{fish} + \vec{S}_{stochastic}|$$

Gradient: per capita food availability

Dynamic Egg production

Anchovy: Energy channeled to the reproductive buffer during the spawning period (income breeder)

Sardine: Energy channeled to the reproductive buffer during the entire year (capital breeder)

For the needs of the 1D simulations, the following were used:

Forcing

- Temperature and vertical diffusivity daily average profiles from 3-D model (year 2003)
- Initial Conditions for biogeochemical variables from 3-D model average profiles
- Nutrient (NO3, PO4) input at surface (~rivers, BSW)

Anchovy Sardine model

Dynamic larvae mortality (~larvae/(larvae+K))
 to maintain population stability

Two-way coupling

- Fluxes (consumption of zooplankton & return of fish by-products)
- Normalize to the 1D water column dividing the fluxes from entire anchovy stock by continental shelf area

1D model

Anchovy and Sardine biomass evolution. Run 20 years climatology perpetually

Available data for anchovy and sardine:

- Total anchovy biomass estimated at ~ 40ktns and total sardine biomass estimated at ~20ktns
- Sardine biomass estimation from acoustic surveys:2004-2007

Anchovy and Sardine weight

Anchovy Sardine 3D simulation

Sardine and Anchovy Adult weight

The Rational behind ensemble simulations

- There are two key sources of uncertainties that limit the skill of single, deterministic forecasts in an unpredictable way
- Initial conditions uncertainties (always be known only approximately) (Lorenz, C. E., 1965)
- Unresolved processes that are active at scales smaller than the grid size. Parameterization is used for the key reasons of model uncertainties

Ensemble simulations

- Atmospheric forcing from 20 year hind-cast (1990-2009) was used to extract the dominant variability performing EOF analysis.
- EOFs and the Kalman filter "second order exact sampling" technique generate an ensemble of atmospheric forcing representative of the interannual/seasonal variability

Ensemble Simulations

Anchovy adult biomass distribution

Members normalized STD and STD(fish biomass) / STD(zoo)

Conclusions

- The coupling of physics and LTL with the two models sardine and anchovy - that include all life stages, described the main features of small pelagic fish
- Model uncertainties are described by generating an ensemble of initial perturbations
- Ensemble predictions in small pelagic fish are valuable as they offer an estimate of the most probable future state of a system and provide the range of possible future outcomes

THANK YOU

