Quantifying interannual variability in growth and condition of YOY Pacific herring (*Clupea pallasii*) in the Strait of Georgia

Emma Pascoe, John Dower, Tom Iwanicki, John Taylor

University of Victoria, Victoria BC

Pacific herring (Clupea pallasii)

Pacific herring migration (DFO 2014)

Pacific herring as prey (DFO 2014)

Growth and condition in Pacific herring

First-order effects – Physical effects, e.g. temperature

Second-order effects – Spring bloom; prey abundance and quality

Hypothesis	Explanation	Prediction	Potential Metrics Zooplankton biomass; Ichthyoplankton biomass; herring/sandlance recruitment; Stable isotopes of carbon as a proxy for productivity; Diet	
Prey availability	Fish that grow quickly survive better because they can escape predators or survive winter better	Marine survival increases with prey production.		
1 '		Growth and food consumption rates increase with prey production.	Feeding rate determine using cesium; Growth determined with RNA:DNA ratio, otolith and/or IGF	
Junk-food/Prey- quality	Growth of juvenile salmon is affected by the nutritional content of their food.	Marine survival and growth increases with the availability of preferred (fat/nutritious) prey.	Growth determined with RNA:DNA ratio, otoliths and/or IGF; Lipid concentration/composition in zooplankton/ichthyoplankton; Stable isotopes of nitrogen; Carbon-to-nitrogen ratio in plankton	

Table 1. Possible mechanisms controlling brood year strength in the marine environment for Pacific salmon.

Questions...

- 1. How do patterns of growth and condition of young-of-year Pacific herring in the Strait of Georgia vary between years?
- 2. To what extent are four commonly used metrics of growth and condition correlated within individuals?

1. Morphometric – Fulton's K 🛛 🔀 Weeks

Measure of length and weight

Fulton's K = $100*W/L^3$

- 1. Morphometric Fulton's K 🛛 🛛 Weeks
- 2. Biochemical RNA:DNA 🔀 4-5 days
 - Measure of growth and condition based on protein production – previous 4-5 days

- 1. Morphometric Fulton's K 🛛 🛣 Weeks
- 2. Biochemical RNA:DNA 🔀 4-5 days
- 3. Physiological Otolith microstructure 🔀 ~10 days
 - Recent growth index: Total length of past 10 daily increments

- 1. Morphometric Fulton's K 🛛 🛣 Weeks
- 2. Biochemical RNA:DNA 🔀 4-5 days
- 3. Physiological Otolith microstructure 🛛 ~10 days
- 4. Nutritional Lipid analysis 🛛 🖾 Weeks
 - Can affect the "food quality" that herring represent to predators such as salmon

Data collection

	2013	2014	2015	2016	Total
Total collected	291	50	305	85	731
Used for analysis	80	50	80	80	290
May-July	-	10	32	40	82
Aug-Oct	80	40	48	40	208

Progress to date

- 1. Morphometric Fulton's K 🗸
- 2. Biochemical RNA:DNA 🗸
- 3. Physiological Otolith microstructure (In progress)
- 4. Nutritional Lipid analysis (Summer 2017)

Year Year KEY POINT: High variability in 2015 otolith growth rate, and 2015&2016 lengths

8

6

Otolith L10 by season – Length normalized

KEY POINT: Fish collected early in the season are growing rapidly

RNA:DNA by season – Length normalized

RNA:DNA by season – Length normalized

Late season (Aug-Oct)

Otolith L10 by season – Length normalized

Late season (Aug-Oct)

KEY POINT: Metrics capture different aspects of growth/condition

Objective 2: Intercorrelation

KEY POINT: Metrics poorly correlated because they capture different aspects of growth/condition

Potential significance

Ecological: Implications for predators of herring

Metrics of condition: Growth and condition vary at different scales within individuals

Next steps...

- 1. Finish otolith analysis on 2015 YOY herring
- 2. Otolith and RNA:DNA analysis on 2016 YOY herring
- 3. Lipid profiles on all YOY herring

Acknowledgements

M.Sc Thesis Committee: John Dower (supervisor), John Taylor, Francis Juanes RNA:DNA work: Tom Iwanicki, Ehlting and Taylor labs Otolith work: Eva MacLennan (NSERC USRA) Field work: Chrys Neville, Tyler Zubkowsi and crew & scientists aboard CCGS Neocaligus and CCGS Ricker 2013-2016

References

Baumann H, Peck MA., Götze HE, Temming A. (2007) Starving early juvenile sprat *Sprattus sprattus* (L.) in western Baltic coastal waters: Evidence from combined field and laboratory observations in August and September 2003. J Fish Biol 70:853–866

Bond NA, Cronin MF, Freeland H, Mantua N (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420

Brophy D, Danilowicz BS (2002) Tracing populations of Atlantic herring (*Clupea harengus L*.) in the Irish and Celtic Seas using otolith microstructure . ICES J Mar Sci 59:1305–1313

Buckley LJ, Caldarone EM, Clemmesen C (2008) Multi-species larval fish growth model based on temperature and fluorometrically derived RNA/DNA ratios: Results from a meta-analysis. Mar Ecol Prog Ser 371:221–232

Davidson D, Marshall CT (2010) Are morphometric indices accurate indicators of stored energy in herring Clupea harengus? J Fish Biol 76:913–929

Fey DP (2005) Is the marginal otolith increment width a reliable recent growth index for larval and juvenile herring? J Fish Biol 66:1692–1703

Foy RJ, Norcross BL (1999) Spatial and temporal variability in the diet of juvenile Pacific herring (*Clupea pallasi*) in Prince William Sound, Alaska. Can J Zool 77:697–706

Kirsch PE, Iverson SJ, Bowen WD, Kerr SR, Ackman RG (1998) Dietary effects on the fatty acid signature of whole Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 55:1378–1386

Hovenkamp F, Witte J (1991) Growth, otolith growth and RNA/DNA ratios of larval plaice *Pleuronectes platessa* in the North Sea 1987 to 1989. Mar Ecol Prog Ser 70:105–116

Norcross BL, Brown ED, Foy RJ, Frandsen M, Gay SM, Kline TC, Mason DM, Patrick EV, Paul AJ, Stokesbury KDE (2001) A synthesis of the life history and ecology of juvenile Pacific herring in Prince William Sound, Alaska. Fish Oceanogr 10:42–57

Peck MA, Baumann H, Clemmesen C, Herrmann J-P, Moyano M, Temming A (2015) Calibrating and comparing somatic-, nucleic acid-, and otolith-based indicators of growth and condition in young juvenile European sprat (*Sprattus sprattus*). J Exp Mar Bio Ecol 471:217–225

Peters J, Diekmann R, Clemmesen C, Hagen W (2015) Lipids as a proxy for larval starvation and feeding condition in small pelagic fish: a field approach on match-mismatch effects on Baltic sprat. Mar Ecol Prog Ser 531:277–292

Schweigert JF, Thompson M, Fort C, Hay DE, Therriault TW, Brown LN (2013) Factors linking pacific herring (*Clupea pallasi*) productivity and the spring plankton bloom in the strait of Georgia, British Columbia, Canada. Prog Oceanogr 115:103–110