

Drivers of Dynamics of Small Pelagic Fish Resources March 6-11, 2017 VICTORIA (CANADÁ)

Comparative early life trophodynamics and larval growth of Alborán Sea sardine environmentally distinct larval habitats (Bays of Málaga and Almería) (Sardina pilchardus) (SW Mediterranean)

Jose María Quintanilla, Raúl Laiz-Carrión, Alberto García, Luis F. Quintanilla, Dolores Cortés, Francisco Gómez-Jakobsen, Lidia Yebra and Jesús M. Mercado

Objetive

The main objective of this study is to determine the influence of environmental and isotopic trophic variables on growth of postlarval sardines at different sites and different seasonal periods during the sardine spawning season

Study area

It represents the hallway to the Mediterranean S a and responsible for the exchange of water mosses between the Atlantic and Mederranean (Lacombe y Richiez, 1982).

Atlantic waters enter through a surface current (lower valinity and nutrient poor) while beneath it, a Mediterrowson countercurrent (higher salinity and putrient rich) flows output v.

It generates two almost permanent antycyclonic gyres in the western part causing the formation of geostrophic fronts in its borders

This is responsible for the formation of upwelling processes between the northern border of the gyre and the continental shelf (Cheney y Doblar, 1982).

Study area

Based on the two main small pelagic nursery sites, being the Bay of Málaga most important in relation to sardine recruitment grounds

These nursery sites have very distinctive environmental features:

MÁLAGA BAY

Influence of Atlantic surface current inducing upwelling and enrichment of waters

ALMERÍA BAY

Mediterranean waters characterized by their lower productivity

Samples

SURVEY	BAY	Size Classes	SL Mean	SL Std. Err.	Ν
TF 1111	MAG	10-21	16.42	0.33	84
	ALM	10-21	16.03	0.33	85
TE 0212	MAG	11-19	15.95	0.29	60
TF U312	ALM	11-19	15.26	0.27	66

LARVAE Somatic variables

Standard Length (mm) Dry Weight (mg)

Otolith biometry

Nº increments Radius (microns) Increment Width (microns)

Trophic variables $\delta^{15}N$ larvae (‰) Trophic Level

Stable nitrogen isotopes become enriched at successive trophic levels, as more of the light isotope (¹⁴N) is secreted than the heavy isotope, leaving the animal enriched in ¹⁵N relative to Its food source.

PREDATORY FISHES

Zooplanktivores, meso-zooplankton, Fish larvae

SECONDARY CONSUMMERS

PRIMARY CONSUMERS

(zooplankton, protozoans)

PRIMARY PRODUCERS (phytoplankton, cyanobacteria)

Variables

ENVIRONMENTAL VARIABLES

Temperature (ºC) Salinity (‰) Fluorescence (RFU) Chloropyll (μg/L)

Variables

MESOZOOPLANKTON (200-500 microns)

Biomass (mgDW/m³) δ¹⁵N mesozooplankton (‰) Cladocera (ind/m³) Copepods (ind/m³) Nauplius copepods (ind/m³) Appendicularia (ind/m³)

Bode et al. 2004 Morote et al. 2010 Costalago et al. 2012 Borme et al. 2013

TF 1111 – Growth patterns of somatic variables

Larvae from ALM showed faster growth (SL & DW) than MAG

TF 1111 – Otolith biometry

ALM > MAG

ALM > MAG

Higher growth potential is reflected in the otoliths. Larvae from ALM showed larger otoliths with wider increments in comparison with MAG population.

TF 1111 – Trophic variables

ANCOVA δ^{15} N vs AGE F (1, 166) = 501.05; p < 0.01 MAG > ALM

Larvae from MAG present higher values of $\delta^{15}N$

 $\delta^{15}N$ increases significanly with age in both populations, implying diet changes with larval growth

TF 1111 – Trophic variables

ANCOVA TL vs AGE F (1, 166) = 185.87; p < 0.01

Larvae from ALM present higher trophic levels, which is interpreted as having a more selective feeding behaviour in comparison with larvae from MAG

Now we may ask ourselves...., Why do larvae with lower δ¹⁵N values have higher trophic levels?

TF 1111 – Trophic variables and the planktonic community

Different isotopic signatures of the mesozooplankton fraction is related to the differences of each planktonic community that ultimately determines $\delta^{15}N$ values of larvae

Higher concentration of **Appendicularia** in **MAG** would **indicate** a recycled N utilization in the system increasing the δ^{15} N values of the mesozooplankton

Mesozooplankton δ¹⁵N (‰) Biomass (mg/m³) Cladocera (ind/m³) Copepods (ind/m³) Nauplius Copepods (ind/m³) Appendicularia (ind/m³)

<mark>ANOVA</mark> p < 0.05 p < 0.1

TF 1111 – Trophic level

7,5

7,0

6,5

ENRICHMENT

consume

TROPHIC LEVEL

TF 1111 – Growth pattern and Trophic variables

ANCOVA SL vs AGE F (1, 166) = 11.93; p < 0.01 ALM > MAG

ANCOVA TL vs AGE F (1, 166) = 185.87; p < 0.01 ALM > MAG

Larvae with higher Trophic Levels showed faster growth

ENVIRONMENTAL VARIABLES INFLUENCE?

TF 1111 – Environmental variables

MÁLAGA BAY ALMERÍA BAY (MAG) (ALM)

Alborán Sea

Strait of Gibraltar

EnvironmentalMACALMTemperature16.4318.71Salinity36.5537.82Iuorescence0.410.35Chlorophyll0.650.97

+2.28 °C

IS FASTER GROWTH DUE TO DIFFERENCE IN TEMPERATURE BETWEEN AREAS MORE THAN IN FEEDING BEHAVIOUR? ANOVA p<0.05 p<0.1

TF 0312 – *Environmental variables*

ALMERÍA BAY	Environmental	MAG	
(MAG) (ALM)	Temperature	13.47	13.99
	Salinity	38.24	38.23
	luorescence	0.82	0.57
	Chlorophyll	1.66	1.82
Alborán Sea			
Strait of			
Bibraltar		5 2 (

SURVEY	BAY	Size Classes	SL Mean	SL Std. Err.	N
TF 0312	MAG	11-19	15.95	0.29	60
	ALM	11-19	15.26	0.27	66
					ANOVA
					p < 0.0
					p < 0.1

TF 0312 – Growth patterns of somatic variables

ANCOVA SL vs AGE F (1, 123) = 11.22; p < 0.01 MAG > ALM

ANCOVA LOGDW vs AGE *F* (1, 123) = 14.52; *p* < 0.01 MAG > ALM

Larvae from MAG showed faster growth (SL & DW) than ALM

TF 0312 – Otolith biometry

Larvae from MAG with higher growth showed also greater otoliths with wider increments in comparison with ALM population

TF 0312 – Trophic variables and the planktonic community

		No dif mesoz assoc in the
	0312 - MAG 0312 - ALM	Differe popula to diffe larvae
MESOZOOPLANKTON LAR	VAE	
Mesozooplankton	MAG	ALM
δ ¹⁵ N (‰)	2.84	2.50
Biomass (mg/m ³)	16.98	17.60
Cladocera (ind/m ³)	5.25	50.50
Copepods (ind/m ³)	2498.38	549.32
Nauplius Copepods (ind/m ³)	186.71	54.86
Appendicularia (ind/m ³)	28.59	52.68

difference in the $\delta^{15}N$ sozooplankton fraction is sociated with no differences the planktonic community

ferences in δ¹⁵N between pulations are exclusively due different enrichment between vae and their potential preys

> ANOVA < 0.05

TF 0312 – Trophic variables and planktonic community

TROPHIC LEVEL MAG > ALM

TF 0312 – Growth patterns and Trophic variables

ANCOVA SL vs AGE F (1, 123) = 11.22; p < 0.01 MAG > ALM

ANCOVA TL vs AGE F (1, 123) = 82.77; p < 0.01 MAG > ALM

Larvae with higher Trophic Levels showed faster growth

Conclusions

Sardine larvae show significant increases of $\delta^{15}N$ values and increased trophic level with age as a consequence of dietary changes throughout ontogenic development.

Higher trophic position has significantly influenced faster somatic growth expressed by greater body size and weight.

Greater growth potential is significantly related to the otolith biometrics.

 $\delta^{15}N$ of sardine larvae is conditioned by the seasonal plankton community structure particular to each nursery area, while TL is influenced by larval trophodynamics.

Feeding ecology is a significant driving factor influencing growth variability in sardine early life stages.

THANKS FOR YOUR ATTENTION