Ecological and functional role of key fish species from the pelagic community of the NW Mediterranean Sea

Marta Albo-Puigserver, Joan Navarro, Isabel Palomera and Marta Coll

Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain E-mail: albo@icm.csic.es

INTERNATIONAL SYMPOSIUM

MARCH 6–11, 2017 VICTORIA, CANADA http://www.pices.int/smallpelagics2017_aspx

Essential Fish Habitat map

Essential Fish Habitat map showing the predicted probability of presence of anchovy (Bellido et al., 2008, Hydrobiol 612:171-184)

- The Ebro delta continental shelf is an important spawning ground of anchovy and sardine.
- Due to their high biomass SPF play a key role transferring energy from lower to higher trophic levels (Coll et al., 2008)

Representation of the NW Mediterranean food-web

Results ED

Models

Small Pelagics GSA06

Anchovy and sardine landings (t) in the GSA06 region from 1940 to 2014

Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas

(CrossMark

Pablo Brosset ^{a,b,*}, Jean-Marc Fromentin ^b, Elisabeth Van Beveren ^b, Josep Lloret ^c, Virginie Marques ^b, Gualtiero Basilone ^d, Angelo Bonanno ^d, Piera Carpi ^{e,f}, Fortunata Donato ^e, Vanja Čikeš Keč ^g, Andrea De Felice", Rosalia Ferreri^d, Denis Gašparević⁸, Ana Giráldez¹, Ali Gücü^h, Magdalena Iglesias¹, lole Leonori^e, Isabel Palomera^k, Stylianos Somarakis¹, Vjekoslav Tičina^g, Pedro Torres¹, Ana Ventero¹, Barbara Zorica⁸, Frédéric Ménard^m, Claire Saraux^b

Rapid changes in growth, condition, size and age of small pelagic fish in the Mediterranean

Elisabeth Van Beveren · Sylvain Bonhommeau · Jean-Marc Fromentin · Jean-Louis Bigot · Jean-Hervé Bourdeix · Pablo Brosset · David Roos · Claire Saraux

Mar Biol (2014) 161:1809-1822

DOI 10.1007/s00227-014-2463-1 ORIGINAL PAPER

7992

⁷⁹96

(CrossMark

2000

2004

²⁰⁰⁸

Total landings (t)

30000

20000

10000

0

1940

1944

946

Anchovy and sardine landings (t) in the GSA06 region from 1940 to 2014

79₇₆

1380

7984 7988

	Progress in Oceanography 151 (2017) 149-162	
4633530	Contents lists available at ScienceDirect	DEFANDERAPH
-	Progress in Oceanography	
ELSEVIER	journal homepage: www.elsevier.com/locate/pocean	Unime

⁷⁹⁶⁸

202

⁷⁹56

1360

1952

Spatio-temporal patterns and environmental controls of small pelagic fish body condition from contrasted Mediterranean areas

Pablo Brosset^{a,b,*}, Jean-Marc Fromentin^b, Elisabeth Van Beveren^b, Josep Lloret^c, Virginie Marques^b, Gualtiero Basilone^d, Angelo Bonanno^d, Piera Carpi^{e,t}, Fortunata Donato^c, Vanja Čikeš Keč^g, Andrea De Felice^c, Rosalia Ferreri^d, Denis Gašparevič^s, Ana Giráldezⁱ, Ali Gücü^b, Magdalena Iglesiasⁱ, Iole Leonori^c, Isabel Palomera^k, Stylianos Somarakis¹, Vjekoslav Tičina^g, Pedro Torresⁱ, Ana Ventero^j, Barbara Zorica^g, Frédéric Ménard^m, Claire Saraux^b

ACIONAL POLITICA ECONOMÍA SOCIEDAD BARC Ciencia Éducación Medio ambiente

Timpo

News from local newspapers about declines of sardine landings (03/03/2016)

SOCIEDAD

Mar Biol (2014) 161:1809-1822 DOI 10.1007/s00227-014-2463-1 ORIGINAL PAPER

Rapid changes in growth, condition, size and age of small pelagic fish in the Mediterranean

Elisabeth Van Beveren · Sylvain Bonhommeau · Jean-Marc Fromentin · Jean-Louis Bigot · Jean-Hervé Bourdeix · Pablo Brosset · David Roos · Claire Saraux Context **Methods Results SIA Results ED Models** Bottom up Overfishing Top-down Climate change Competition

We need ecological knowledge on the specific trophic interactions and energy dynamics between species

Context **Objective** Methods Results SIA Results ED Models Conclusions

To investigate the seasonal **energy dynamics** and the **trophic relationships** between the main species of the pelagic compartment, focusing on European anchovy and European pilchard

 \rangle Models \rangle

Results ED

Conclusions

How do we study the ecological role of SPF?

Objective

> Results ED

Models > Conc

How do we study the ecological role of SPF?

Stable Isotopes

Objective

Research questions:

I - Which species present trophic overlap?

2- Is there a seasonal variation of the community structure?

Results SIA

A 🛛 🔪 Results ED

> Models

Conclusions

How do we study the ecological role of SPF?

Stable Isotopes

Objective

Research questions:

I - Which species present trophic overlap?

2- Is there a seasonal variation of the community structure?

		_	
ne	rgy	Den	sity
	0/		

Direct Bomb calorimetry Results SIA

Results ED

Conclusion

How do we study the ecological role of SPF?

Stable Isotopes

Research questions:

I - Which species present trophic overlap?

2- Is there a seasonal variation of the community structure?

Energy Density

Models

Research questions: I- Which are the pelagic species with higher energy density-prey quality?

2- Is there a variation of the seasonal energy density?

Mean and standard deviation of δ^{13} C and δ^{15} N values

(Albo-Puigserver et al., 2016 J Sea Res 117:27-35)

✓ No major shifts in the relative position of species across seasons

Models

✓ Sardine and anchovy had the lowest trophic positions

Standard ellipses \rightarrow measure trophic niche overlap

Small pelagic fishes adults

Models

- ✓ Sardine and anchovy overlapped their niches
- Although the three species are plankton feeders, sardinella segregated the isotopic niche from sardine and anchovy

Why?

(Costalago & Palomera 2014 Sci Mar 78:41-54)

Conclusions

How do we study the ecological role of SPF?

<section-header><section-header> Stable Isotopes Agearch questions: 1- Which is the niche position of each group (SPF, MPF, Predator), respect to the others? 2- Is there a variation of the community structure between seasons? Stomach Content

Analysis

How do we study the ecological role of SPF?

A > Result

Results ED

Models

Pairs of means differing significantly (P < 0.05) by pairwise tests between species are indicated by the letters - species with the same letter were not significantly different (Albo-Puigserver et al., 2017 Deep-Sea Res pt II, In press).

Context > Objective > Methods > Results SIA > Results ED > Models > Conclusions

Methods > Results SIA

Results ED

D > Models

Dynamic Energy Budget Model: Engraulis encrasicolus

Context

Responses of European anchovy vital rates and population growth to environmental fluctuations: An individual-based modeling approach

H. Pethybridge^{a,*}, D. Roos^b, V. Loizeau^a, L. Pecquerie^c, C. Bacher^a

^a IFREMER, Research Unit: Biogeochemistry and Ecotoxicology, Centre de Brest, 29280 Plouzané, France

^b IFREMER, Research Unit: Fisheries Resources, Centre de Séte, France

^c University of California Santa Barbara, Department of Ecology, Evolution and Marine Biology, Santa Barbara, CA 93106-9620, USA

Methods > Results SIA

Results ED

Conclu

Models

Dynamic Energy Budget Model: Sardina pilchardus

Context

- Sardine is a multiple spawner that rely in energy stored during summer as fat for reproduction during late autumn-winter
- The Mediterranean Sea is a climate change hotspot. Shifts in plankton productivity and increase of the SST are expected

How variations on temperature and food availability would affect the life-cycle of *Sardina pilchardus*?

Context >

> Methods

Results SIA

Results ED

Dynamic Energy Budget Model: Sardina pilchardus

Model calibration

Environmental scenarios

Models

Bioenergetics simulations successfully captured ontogenetic and seasonal growth patterns, not the energy patterns

Results ED

> Conclusio

How do we study the ecological role of SPF?

Stable Isotopes

Research questions:

Sardinella segregate the trophic niche from the other SPF

2- Overall community structure is stable through the year

3- Sardinella prey on gelatinous zooplankton

Energy Density

Models

Research questions: I - Which are the pelagic species with higher energy density-prey quality?

2- Is there a variation of the seasonal energy density?

Results SIA

Results ED

Conclusion

How do we study the ecological role of SPF?

Stable Isotopes

Research questions:

Sardinella segregate the trophic niche from the other SPF

2- Overall community structure is stable through the year

3- Sardinella prey on gelatinous zooplankton

Energy Density

Models

Research questions:

- I Sardine classified as high quality prey
- 2- Sardine and anchovy have a capital and income breeding behavior, respectively
 - **3-** Increase of temperature or decrease in food availability decrease sardine's fecundity;?

Results SIA

> Results ED

Models > Con

Conclusions

How do we study the ecological role of SPF?

Context > Objective > Methods > Results SIA > Results ED > Models > Conclusio

Qualitative modelling: being useful to rapidly assess alternative assumptions about system structure

From the signed digraph one can examine the feedback properties of a system (stability analysis)

Context > Objective > Methods > Results SIA > Results ED > Models > Conclusion

Qualitative modelling: hypotheses testing

Dambacher et al., 2003 Am Nat 161, 876-888

matrix

Results ED

Conclusion

Qualitative modelling: hypotheses testing

Predictions of qualitative response to a positive input

Input and response variable	М	M _{H1}	M _{H2}	M _{H1,2}	M _{H3}	M _{H4}	M _{H5}	М _{Н3,4}	М _{Н3,5}	M _{H6}
a) Input to temperature										
Sardine	?	?	(-)	?	(-)	?	?	?	?	?
Anchovy	(-)	(-)	(-)	?	(-)	(-)	?	(-)	?	(-)
Sardinella	+	+	+	?	+	+	?	+	?	+
b) Input to fisheries										
Sardine	?	?	?	?	(-)	?	?	(-)	?	?
Anchovy	?	?	?	?	?	?	?	?	?	?
Sardinella	(+)	(+)	(+)	(+)	(+)	(+)	?	(+)	?	(+)
c) Input to predators										
Sardine	(-)	(-)	(-)	(-)	(-)	(-)	?	(-)	?	-
Anchovy	?	?	?	?	?	?	?	?	?	-
Sardinella	?	?	?	?	?	?	?	?	?	?

Models

"weighted predictions (W)"										
0.60	0.25	0.20	0.31	0.14	0.20	0.43	0.22	0.20		
0.33	0.41	0.38	0.18	0.41	0.38	0.13	0.15	0.38		
0.38	0.11	0.52	0.20	0.067	0.52	0.18	0.24	0.52		
0.30	0.38	0.27	0.43	0.60	0.27	0.23	0.	0.27		
0.38	0.12	0.11	0.20	0.85	0.11	0.82	0.25	0.11		
0.	0.33	0.25	0.27	0.44	0.38	0.	0.17	0.11		
0.	0.33	0.33	0.44	0.33	0.33	0.60	0.19	0.33		
1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.32	1.0		
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.32		

Dambacher et al., 2003 Am Nat 161, 876-888

- ✓ Most of the model structures tested were sign stable. However, when we include recruitment overfishing was unstable and the system collapse
- The high proportion of sign indeterminacy (?) indicated that small changes can reverse the direction of the response;
- Lower quality zooplankton (bottom-up control) and fisheries (top-down control) in combination with an increase of temperature (press perturbation) lead to a decrease in sardine and anchovy and an increase in sardinella, in line with field observations;

Probably environmental fluctuations and bottomup control alone do not explain the decline on sardine and anchovy without considering the impact of fishing

Thank you!

Marta Albo-Puigserver, Joan Navarro, Marta Coll, Isabel Palomera

albo@icm.csic.es

ACKNOWLEDGMENT:

Raquel Sáez-Liante, Craig A. Layman Heidi Pethybridge Diego Borme Valentina Tirelli Jeffrey Dambacher

For more information see Posters: S2-P4; S3-P4; S5-P1

CSIRO

General Fisheries Commission for the Mediterranean Commission générale des pêches pour la Méditerranée

NC STATE

UNIVERSITY

INTERNATIONAL SYMPOSIUM

DRIVERS OF DYNAMICS O