Do jellyfish blooms affect small pelagic fishes in coastal marine environments?

James Ruzicka¹, Richard Brodeur², Mary Beth Decker³, Kristin Cieciel⁴

- ¹ Oregon State University, Newport, OR
- ² Northwest Fisheries Science Center, Newport, OR
- ³ Department of Ecology and Evolutionary Biology, Yale University
- ⁴ Alaska Fisheries Science Center, Auke Bay, AK

figure: Kelly Robinson

figure: Kelly Robinson

What impacts do jellyfish blooms have on the Bering Sea, Gulf of Alaska, & Northern California Current ecosystems? What is their impact on small pelagic fishes?

Project Goals

- 1. Identify the species/years most impacted by jellyfish blooms
- 2. Determine dietary overlap & spatial overlap of jellyfish & forage fish
- 3. Determine predatory impacts on fish larvae and zooplankton
- 4. Use ecosystem modeling to estimate impact of jellyfish on other components of the ecosystem

Eastern Bering Sea Bottom Trawl Jellyfish Biomass

3-year running means of forage fish & jellyfish in Bottom Trawl Survey

Robinson et al. (2014)

Northern California Current

The sea nettle, Chrysaora fuscescens

photos: R. Brodeur

Sea nettles (t km⁻²)

Bonneville Adult Returns vs September Sea Nettles (in ocean entry year)

Fall Chinook SubYrlng (3 yrs)

Fall-run Chinook

Index of Feeding Intensity

Feeding analysis by E. Daly (OSU)

EBS: Spatial & diet overlap between jellyfish & forage fishes

Fishery surveys monitor large jellyfish & forage fish

Bering Arctic Subarctic Integrated Surveys
BASIS
Surface Trawls (upper 15 m)
August-September 2004 – 2016

Feeding rates & diet composition

Surface Trawl Jellyfish Biomass

Chrysaora melanaster

Surface Trawl Forage Fish Biomass

Geostatistical Analyses

Comparison of Global Index of Collocation between Chrysaora & forage fishes in the Bering Sea

E2E Ecosystem modeling approach

- 1. Synthesize diet, consumption rate, and community biomass data within a trophic framework to <u>estimate grazing pressure</u> of jellyfish upon zooplankton production
- 2. Estimate predation pressure upon fish eggs and larvae
- 3. Identify important <u>energy transfer nodes</u> and compare alternate <u>ecosystem states</u> (warm vs cool years, high vs low jelly years)
- 4. Simulation analyses to estimate <u>impact of jellyfish blooms</u> upon other components of the ecosystem
- 5. Evaluate roles of <u>food web structure vs physical context</u> in ecosystem dynamics

ECOTRAN end-to-end ecosystem modeling platform

Model analysis: similarly configured models

Eastern Bering Sea

western Coastal Gulf of Alaska

Northern California Current

Model analysis: ecosystem state metrics

 Quantify the importance of jellyfish & forage fish groups as energy transfer nodes

(% of all ecosystem production used)

(% of all consumer production contributed)

4% 3% 2% 1% 0.2%

Chrysaora

capelin & other forage fish

walleye pollock & other planktivores

EBS: Jellyfish consume about 20x as much food as forage fish, but contribute only 1/10th as much energy to upper trophic levels

squid

fisheries

EBS

←<u>footprint</u>

<u>reach</u>→

(% of all ecosystem production used)

(% of all consumer production contributed)

←footprint

<u>reach</u>→

(% of all ecosystem production used)

(% of all consumer production contributed)

Model analysis: simulations

Estimating the effects of a changing pelagic community in different environmental regimes

(simulation of WARM period jelly & forage fish abundance over 2004 – 2012 mean)

(simulation of WARM period jelly & forage fish abundance over 2004 – 2012 mean)

(simulation of COLD period jelly & forage fish abundance over 2004 – 2012 mean)

(simulation of COLD period jelly & forage fish abundance over 2004 – 2012 mean)

Effects of a Jellyfish bloom in NCC

(simulation of a 1 stdev (≈2x) increase over 1999 – 2012 mean *Chrysaora* biomass)

Effects of jellies in western CGoA

(simulation of a 2x increase in gelatinous zooplankton biomass)

Conclusions

- Bottom trawl timeseries suggests inverse relationship between forage fish and jellyfish in EBS
- Columbia River salmon return data and juvenile salmon feeding studies suggest poor foraging environment for young salmon in NCC during high jellyfish years
- Model analyses infer that Chrysaora consume about 20X as much food as forage fish in the EBS but contribute only 1/10th as much energy to upper trophic levels. Jellyfish are also important consumers in the NCC but much less so in the CGoA*
- Model simulations of changes in EBS Chrysaora & forage fish abundances in warm (2002-06) & cold (2007-12) years show large impacts of jellyfish throughout the food web. Similar impacts in NCC, but not in CGoA

Thank you!

Sea-going scientists at AFSC

ALASKA FISHERIES SCIENCE CENTER

Bob Lauth

