Probabilistic forecasting of small pelagic fish recruitment

Jose A. Fernandes (jfs@pml.ac.uk) (jfernandes@azti.es)

AZTI-Tecnalia (Spain)

Intelligent Systems Group (Spain) The University of the Basque Country (Spain)

Plymouth Marine Laboratory (UK)

Victoria, 11th of March, 2017

Probabilistic forecasting of small pelagic fish recruitment

Outline

2 Robust machine learning methods for fish recruitment forecasting

Probabilistic forecasting of multiple fish species recruitment

Probabilistic forecasting of small pelagic fish recruitment Stock spawning biomass - recruitment relationship of anchovy

Outline

Stock spawning biomass - recruitment relationship

2 Robust machine learning methods for fish recruitment forecasting

3 Probabilistic forecasting of multiple fish species recruitment

• Stock spawning biomass - recruitment relationship of anchovy?

• Stock spawning biomass - recruitment relationship of anchovy?

• Stock spawning biomass - recruitment relationship of anchovy?

Outline

2 Robust machine learning methods for fish recruitment forecasting

3 Probabilistic forecasting of multiple fish species recruitment.

PNA	POL	CLI1	Uim_4311	V_4523	UIBs_4502	UILm_4502	Anchovy
0.01	0.54	1.21	???	-0.37	689	???	1550
0.03	0.27	0.46	283	-1.91	???	68	5094
0.33	0.44	0.42	80	???	1129	36	3742
0.31	0.09	0.77	???	-1.95	1204	-94	2455
0.36	???	0.07	???	-0.47	402	???	3081
0.71	0.03	???	45	-0.41	626	71	1010

PNA	POL	CLI1	Uim_4311	V_4523	UIBs_4502	UILm_4502	Anchovy
0.01	0.54	1.21	???	-0.37	689	???	1550
0.03	0.27	0.46	283	-1.91	???	68	5094
0.33	0.44	0.42	80	???	1129	36	3742
0.31	0.09	0.77	???	-1.95	1204	-94	2455
0.36	???	0.07	???	-0.47	402	???	3081
0.71	0.03	???	45	-0.41	626	71	1010

PNA	POL	CLI1	Uim_4311	V_4523	UIBs_4502	UILm_4502	Anchovy
0.01	0.54	1.21	???	-0.37	689	???	Low
0.03	0.27	0.46	283	-1.91	???	68	High
0.33	0.44	0.42	80	???	1129	36	High
0.31	0.09	0.77	???	-1.95	1204	-94	Medium
0.36	???	0.07	???	-0.47	402	???	High
0.71	0.03	???	45	-0.41	626	71	Low

Anchovy	UILm_4502	UIBs_4502	V_4523	Uim_4311	CLI1	POL	PNA
Low	???	689	-0.37	???	1.21	0.54	0.01
High	68	???	-1.91	283	0.46	0.27	0.03
High	36	1129	???	80	0.42	0.44	0.33
Medium	-94	1204	-1.95	???	0.77	0.09	0.31
High	???	402	-0.47	???	0.07	???	0.36
Low	71	626	-0.41	45	???	0.03	0.71

Anchovy	UILm_4502	UIBs_4502	V_4523	Uim_4311	CLI1	POL	PNA
Low	???	689	-0.37	???	1.21	0.54	0.01
High	68	???	-1.91	283	0.46	0.27	0.03
High	36	1129	???	80	0.42	0.44	0.33
Medium	-94	1204	-1.95	???	0.77	0.09	0.31
High	???	402	-0.47	???	0.07	???	0.36
Low	71	626	-0.41	45	???	0.03	0.71

Anchovy	UILm_4502	UIBs_4502	V_4523	Uim_4311	CLI1	POL	PNA
Low	-42	689	-0.37	-2	1.21	0.54	0.01
High	68	1611	-1.91	283	0.46	0.27	0.03
High	36	1129	-1.61	80	0.42	0.44	0.33
Medium	-94	1204	-1.95	-8 6	0.77	0.09	0.31
High	-78	402	-0.47	52	0.07	-0.13	0.36
Low	71	626	-0.41	45	-56	0.03	0.71

Anchovy	UILm_4502	UIBs_4502	V_4523	Uim_4311	CLI1	POL	PNA
Low	-42	689	-0.37	-2	1.21	0.54	0.01
High	68	1611	-1.91	283	0.46	0.27	0.03
High	36	1129	-1.61	80	0.42	0.44	0.33
Medium	-94	1204	-1.95	-86	0.77	0.09	0.31
High	-78	402	-0.47	52	0.07	-0.13	0.36
Low	71	626	-0.41	45	-56	0.03	0.71

PNA	POL	CLI1	Uim_4311	V_4523	UIBs_4502	UILm_4502	Anchovy
Low	High	High	Low	High	Low	Low	Low
Low	High	Low	High	Low	High	High	High
Low	High	Low	High	Low	High	High	High
High	Low	High	Low	Low	High	Low	Medium
High	Low	Low	High	High	Medium	Low	High
High	Low	Low	High	High	Low	High	Low

PNA	POL	CLI1	Uim_4311	V_4523	UIBs_4502	UILm_4502	Anchovy
Low	High	High	Low	High	Low	Low	Low
Low	High	Low	High	Low	High	High	High
Low	High	Low	High	Low	High	High	High
High	Low	High	Low	Low	High	Low	Medium
High	Low	Low	High	High	Medium	Low	High
High	Low	Low	High	High	Low	High	Low

100	PRIX.	CLI1	104,071	V_4523	UIBs_4502	10.1,660	Anchovy
1.00	(α_{2})	High	1.04	High	Low	1.05	Low
1.00	rept.	Low	104	Low	High	-	High
1.00	194	Low	-14	Low	High	-	High
-	1.00	High	1.04	Low	High	1.00	Medium
-	$\sim 10^{-10}$	Low	-14	High	Medium	1.00	High
	1.00	Low	1946	High	Low	-	Low

Anchovy final model

Anchovy final model

Anchovy final model

Application to 7 species in the North East Atlantic

Outline

Stock spawning biomass - recruitment relationship

2 Robust machine learning methods for fish recruitment forecasting

Operation of a state of a stat

Multi-species probabilistic model

Anchovy

Sardine

Hake

Multi-species probabilistic model

Anchovy

Sardine

Hake

Multi-dimensional classification approach to fisheries

Simultaneous forecasting of 3 fish species recruitment

- Doubled the chance of being right in all species simultaneously (Joint Acc.).
- Better probabilities estimations (BS).
- The advantage of a single model suiting the ecosystem approach.

Pre-processing pipeline	ARI Acc.	ARI BS	SR Acc.	SR BS	HR Acc.	HR BS	Joint Acc
CM-MID-CFS (Uni-D)	52.7 ± 6.7	0.36	55.7 ± 6.7	0.34	67.6 ± 3.3	0.27	17.3 ± 4.8
CMcart-MIDmean-CFSsum	54.6 ± 7.3	0.35	$\textbf{65.4} \pm \textbf{5}$	0.27	72.9 ± 5.5	0.21	28.9 ± 4.5
CMcart-MIDindiv-CFScart	46.5 ± 4.3	0.32	59.8 ± 6.3	0.24	71.4 ± 5.8	0.19	22.6 ± 4.3
CMcart-MIDmean-CFSmean	45 ± 7.6	0.32	58.4 ± 6	0.25	$\textbf{75} \pm \textbf{4.6}$	0.18	19.7 ± 5.5
CMcart-MIDmean-CFScart	$\textbf{57.9} \pm \textbf{5}$	0.30	60.6 ± 4.8	0.27	68.9 ± 7.3	0.21	29.5 ± 4
CMcart-MIDmean-CFSindiv	53.8 ± 4.8	0.32	63.4 ± 2.9	0.27	71.6 ± 6.1	0.18	28.5 ± 4.7

Model integration: Gatgets and naive Bayes for regression

Publications

International Journals: first author

J.A. Fernandes, et al. (2010) Fish recruitment prediction, using robust supervised classification methods. *Ecological Modelling*, 221(2): 338-352.

J.A. Fernandes, et al. (2013) Supervised pre-processing approaches in multiple class-variables classification for fish recruitment forecasting. Environmental Modelling & Software, 40: 245-254.

J.A. Fernandes, et al. (2015) Evaluating machine-learning techniques for recruitment forecasting of seven North East Atlantic fish species. *Ecological Informatics*, 25: 35-42.

E. Andonegi, J.A. Fernandes, *et al.* (2011) The potential use of a Gadget model to predict stock responses to climate change in combination with Bayesian Networks: the case of the Bay of Biscay anchovy. *ICES Journal of Marine Science*, 68(6): 1257-1269.

J.A. Fernandes, et al. (2009) Anchovy Recruitment Mixed Long Series prediction using supervised classification. *Working document ICES WKSHORT*, Bergen, Norway.

Probabilistic forecasting of small pelagic fish recruitment

Jose A. Fernandes (jfs@pml.ac.uk) (jfernandes@azti.es)

AZTI-Tecnalia (Spain)

Intelligent Systems Group (Spain) The University of the Basque Country (Spain)

Plymouth Marine Laboratory (UK)

Victoria, 11th of March, 2017