End-to-end ecosystem modelling: marine heat
waves and endangered Chinook salmon
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 Fisheries management of piscine salmon predators such as hake and jack mackerel
could have a beneficial effect on salmon populations.

 Protecting and restoring habitat where larval fish are generated might benefit
juvenile Chinook salmon during the early-ocean life stage.

 Compared and contrasted static energy
flow between the two ecosystem models
(pre- and post- onset of MHWS).

« 2-D Time-dynamic model is driven by
Coastal Upwelling Transport Index and a
nutrient timeseries from the NH line.

* Assessed the effects of experimentally
decreasing competitors, predators, and
prey in 75-year simulations, with 100 Monte
Carlo models per scenario.

References

Crozier, L. G., B. J. Burke, B. E. Chasco, D. L. Widener, and R. W. Zabel. 2021. Climate change threatens Chinook
salmon throughout their life cycle. Communications Biology 4:222.

Gomes, D., Ruzicka, J. J., Crozier, L. G., Huff, D. D., Phillips, E. M., Hernvann, P. Y., Morgan, C. A.,
Brodeur, R. D., Zamon, J. E., Daly, E. A., Bizzarro, J. J., Fisher, J. L., & Auth, T. D. (2022). An updated
end-to-end ecosystem model of the Northern California Current reflecting ecosystem changes due to
recent marine heat waves. bioRxiv, 1-81.

Schematic of Ecosystem model. The model is
physically driven by upwelling and nutrient timeseries. Ruzicka, J. J., Brodeur, R. D., Emmett, R. L., Steele, J. H., Zamon, J. E., Morgan, C. A., ... & Wainwright, T. C. (2012).

Nitrogen is then transferred up the food web in a bottom- N _~""N__~ __—7 = Interannual variability in the Northern California Current food web structure: changes in energy flow pathways and the
[2h ©F elelmelEeinen, izl M role of forage fish, euphausiids, and jellyfish. Progress in Oceanography, 102, 19-41.




	Slide 1

