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Accurately predicting future ocean acidification (OA) conditions is crucial for
advancing OA research at regional and global scales, and guiding society's
mitigation and adaptation strategies. This study presents a new model-data
fusion product covering 10 global surface OA indicators based on 14 Earth
System Models (ESMs) from the Coupled Model Intercomparison Project Phase
6 (CMIP6), along with three recent observational ocean carbon data products.
The indicators include fugacity of carbon dioxide, pH (total scale), total

£CO, (natm)
(@)

200 -
2250

—~ 2200

—
1

£02150 1

g 2100
2

hydrogen ion content, free hydrogen ion content, carbonate ion content,
aragonite saturation state, calcite saturation state, Revelle Factor, total
dissolved inorganic carbon content, and total alkalinity content. The evolution
of these OA indicators is presented on a global surface ocean 1°x1° grid as
decadal averages every ten years from preindustrial conditions (1750), through
nistorical conditions (1850-2010), and to five future shared socioeconomic
nathways (2020-2100): SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
DOI: 10.1029/2022MS003563.
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Figure 1. Temporal changes of global surface ocean OA indicators (area-

A model-data fusion product was created by applying adjustments to the averaged globally) from 14 CMIP6 Earth System Models after applying
outputs of 14 CMIP6 Earth System Models with the latest observational data: adjustments with observational data.

1.0bservational data based SSS, SST, DIC and TA were extracted or
calculated from SOCAT (version 2022), GLODAPv2 (version 2022), and
CODAP-NA (version 2021).

2.The temporally adjusted DIC (to the year of 2010), as well as SST, SSS, and
TA were interpolated onto a global surface ocean 1°x1° grid.

3.Proxy-based DIC and TA calculated with gridded temperature, salinity, and
DO from the World Ocean Atlas (WOA-2018) were used to further quality
control (QC) the gridded observational DIC and TA data.

4. The temporal evolution of global surface ocean temperature, salinity, DIC,
and TA from 1850 to 2100 out of 14 ESMs was adjusted with offsets that
were derived based on the differences between the model output in 2010
and the corresponding observational data in 2010 at that grid point.

5.The adjusted trajectories of SST, SSS, DIC, and TA from these ESMs, as well
as constant phosphate and silicate content from WOA-2018, were used to AR W A ey
calculate all surface OA indicators at all locations of the global surface s e W afs v s v omwors e
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Table 1. CMIP6 Earth System Models (ESMs) used for this analysis. Figure 2. Surface ocean pH on total  Figure 3. Surface ocean aragonite
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