Scenarios for the Future Ocean: A FishMIP Approach

RIE

Ε

Tyler Eddy Olivier Maury Derek Tittensor

MEMORIAL UNIVERSITY

FishMIP

- Large Model Diversity • Size or age-based • Food-web

- Species distribution
- Hybrid models

Aim

projections

Network of >100 global & regional marine ecosystem modellers

• Develop a common protocol that all models can follow to make climate change

Tittensor et al. 2018 Geoscientific Model Developmer

Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change

Heike K. Lotze^{a,1}, Derek P. Tittensor^{a,b}, Andrea Bryndum-Buchholz^a, Tyler D. Eddy^{a,c}, William W. L. Cheung^c, Eric D. Galbraith^{d,e}, Manuel Barange^f, Nicolas Barrier^g, Daniele Bianchi^h, Julia L. Blanchard^{i,j}, Laurent Bopp^k, Matthias Büchner^I, Catherine M. Bulman^m, David A. Carozzaⁿ, Villy Christensen^o, Marta Coll^{g,p}, John P. Dunne^q, Elizabeth A. Fulton^{j,m}, Simon Jennings^{r,s,t}, Miranda C. Jones^c, Steve Mackinson^u, Olivier Maury^{g,v}, Susa Niiranen^w, Ricardo Oliveros-Ramos^x, Tilla Roy^{i,y}, José A. Fernandes^{z,aa}, Jacob Schewe^I, Yunne-Jai Shin^{g,bb}, Tiago A. M. Silva^r, Jeroen Steenbeek^p, Charles A. Stock^q, Philippe Verley^{cc}, Jan Volkholz^I, Nicola D. Walker^r, and Boris Worm^a

SANG

 Large amount of variability in projected biomass declines among climate scenarios

• 5% loss of ocean biomass with every 1 °C of global warming

 Biggest losses at top of the food web (predators)

Lotze et al. 2019 PNAS

ARTICLES https://doi.org/10.1038/s41558-021-01173-9

Check for update **OPEN Next-generation ensemble projections reveal** higher climate risks for marine ecosystems

nature

climate change

Derek P. Tittensor^{1,2}[×], Camilla Novaglio^{3,4}, Cheryl S. Harrison^{5,6}, Ryan F. Heneghan⁷, Nicolas Barrier^{®8}, Daniele Bianchi^{®9}, Laurent Bopp^{®10}, Andrea Bryndum-Buchholz^{®1}, Gregory L. Britten ¹¹, Matthias Büchner ¹², William W. L. Cheung ¹³, Villy Christensen ¹³, Marta Coll^{10,14,15}, John P. Dunne¹⁶, Tyler D. Eddy¹⁷, Jason D. Everett^{18,19,20}, Jose A. Fernandes-Salvador²¹, Elizabeth A. Fulton^{4,22}, Eric D. Galbraith²³, Didier Gascuel²⁴, Jerome Guiet⁹, Jasmin G. John¹⁶, Jason S. Link²⁵, Heike K. Lotze¹, Olivier Maury⁸, Kelly Ortega-Cisneros ²⁶, Juliano Palacios-Abrantes ^{13,27}, Colleen M. Petrik ²⁸, Hubert du Pontavice^{24,29}, Jonathan Rault⁸, Anthony J. Richardson^{18,19}, Lynne Shannon²⁶, Yunne-Jai Shin[®], Jeroen Steenbeek¹⁵, Charles A. Stock¹⁶ and Julia L. Blanchard^{3,4}

- Greater climate risks in CMIP6 than CMIP5
- Large regional uncertainty in biomass projections between CMIPs

CMIP6 SSP5-8.5

Change between CMIPs

Tittensor et al. 2021 Nature Climate Change

Global and regional marine ecosystem model climate change projections reveal key uncertainties

Tyler Eddy¹, Ryan Heneghan², Andrea Bryndum-Buchholz³, Beth Fulton⁴, Cheryl Shannon Harrison⁵, Derek Tittensor⁶, Heike K Lotze⁶, Kelly Ortega-Cisneros⁷, Camilla Novaglio⁸, Daniele Bianchi⁹, Matthias Büchner¹⁰, Catherine M Bulman¹¹, William Cheung¹², Villy Christensen¹³, Marta Coll¹⁴, Jason D Everett¹⁵, L. Denisse Fierro Arcos¹⁶, Eric D. Galbraith¹⁷, Didier Gascuel¹⁸, Jerome Guiet¹⁹, Steve Mackinson²⁰, Olivier Maury²¹, Susa Niiranen²², Ricardo Oliveros-Ramos²¹, Juliano Palacios-Abrantes²³, Chiara Piroddi²⁴, Hubert du Pontavice²⁵, Jonathan Charles Reum²⁶, Anthony Richardson²⁷, Jacob Schewe¹⁰, Lynne Shannon²⁸, Yunne-Jai Shin²⁹, Jeroen Gerhard Steenbeek³⁰, Jan Volkholz³¹, Nicola Walker³², Phoebe Woodworth-Jefcoats³³, and Julia L. Blanchard⁸

- Mismatches in climate change projections from global and regional marine ecosystem models
- Global marine ecosystem models produce greater declines than regional models

Eddy et al. In review ESS Open Archive

FishMIP

Marine Ecosystem & Fisheries Models

FishMIP

Marine Ecosystem & Fisheries Models

Shared Socio-economic Pathways (SSPs)

Socio-economic challenges for adaptation

O'Neill et al. 2016 Geoscientific Model Development

Oceanic System Pathways (OSPs)

Global Environmental Change 45 (2017) 203-216

From shared socio-economic pathways (SSPs) to oceanic system pathways (OSPs): Building policy-relevant scenarios for global oceanic ecosystems and fisheries

O. Maury^{a,b,*}, L. Campling^c, H. Arrizabalaga^d, O. Aumont^e, L. Bopp^{f,g}, G. Merino^d, D. Squires^h, W. Cheungⁱ, M. Goujon^j, C. Guivarch^k, S. Lefort^f, F. Marsac^{a,b}, P. Monteagudo^l, R. Murtugudde^m, H. Österblomⁿ, J.F. Pulvenis^o, Y. Ye^p, B.J. van Ruijven^q

Domains & drivers structuring the OSPs

ECONOMY	
Wild fish demand	Sha
low high	
f (population growth, GDP/capita, diet, alternative animal proteins, etc)	
	- co
Fishing Costs	Cor
low high	No ii
	priv
f (oil price, crew / labour price, technological advances, etc)	f (c po

Maury et al. 2017 Global Environmental Change

Regional Scenarios

What could it mean for European Fisheries?

These draft socio-political storylines were elaborated by CERES partners and stakeholders

World Markets – RCP 8.5 and SSP5 (A1F1)

- Fish obtained from the cheapest sources
- Decommissioning subsidies reduced
- Few legal and technical restrictions
- •Only a few high-tech boats
- •Sequentially depleted fish stocks
- •More competition for resources globally
- •Low taxes, strong private sector
- Europe outcompeted by Asia/China
- •Use of cheap immigrant labour

©iStock images

Pinnegar et al. 2021 Frontiers in Marine Science

IPBES Nature Futures Scenarios

- Nature for nature biodiversity priority
- Nature for society ecosystem services priority
- Nature for culture Indigenous and rural community priority

Nature for Society Natural capital Example indicator:

% of GDP from fisheries

Kim et al. 2023 Global Environmental Change

The Gaps

- Global scenarios for all fisheries
- Quantitative forcings for FishMIP
 marine ecosystem models

FishMIP Scenarios Working Group

- Marine ecosystem modellers
- Earth system modellers
- Integrated assessment modellers
- Economists
- Legal experts
- Social scientists
- FAO representatives

Ocean System Pathways (OSPs)

- Develop OSP storylines based on SSP storylines
- Translate OSP storylines into quantitative model drivers for FishMIP models (spatially resolved fishing mortality/effort)
- Create OSP protocols and model projections under fishing and climate change

Domains & drivers structuring the OSPs

Maury et al. In review ESS Open Archive

Ocean System Pathways (OSPs)

- Drivers: Country level GDP, human population, market demand
- Multiple scales: national, regional, and global
- Multiple fleets: large pelagic, small pelagic, benthic-demersal, emerging fisheries, mariculture

Maury et al. In review ESS Open Archive

OSP Simulation Protocols

Biodiversity

Maury et al. In review ESS Open Archive Blanchard et al. In review ESS Open Archive

Acknowledgements

- All contributors to FishMIP
 - Modellers
 - Data providers
 - Coordinators
 - ESM community
 - ISIMIP
- FishMIP is community coordinated and anyone can join

fishmip.org

THANK-YOU!

Tyler Eddy tyler.eddy@mi.mun.ca thelifeaquatic.xyz

OSP Storylines

The OSP1 "Sustainability first" \rightarrow SSP1: Sustainable practices across multiple sectors

- Preferences for high quality wild fish
- Low-income populations consume small pelagic species, aquaculture transitions to non-fish food sources
- Prominence of regional and sub-regional markets.
- Precautionary and efficient fisheries management based on the extensive use of MPAs

The OSP2 "Conventional Trends" -> SSP2: Continuation on current trajectory

- Demand for fisheries products continues to increase
- Globalized fish markets
- Fisheries management, largely based on quotas is unevenly effective

The OSP3 "Dislocation" - SSP3: Nationalism, rivalries, geopolitical conflicts, regional disparities

- Local capture and local consumption of fish, fragmentation of markets for aquatic products
- Failure of fisheries management, breakdown of international cooperation
- Demand remains high because fish is a primary source of protein and other essential nutrients
- Food security challenges common due to lack of cooperation, failure of management, non-compliance

The OSP4 "Global elite and inequalities" → SSP4: Techno-optimism, economic growth, inequalities

- High-value fisheries and aquaculture products reserved for an elite, low quality products supply aquaculture
- Vast majority of the population rely on cheap industrial animal products
- Multinational corporations govern global economics, developing countries are excluded from decision-making
- Corporate profits drive fisheries management, using advanced technologies to ensure compliance

The OSP5 "High technology and market" -> SSP5: Economic growth, technologies, cheap fossil energy

- Low fishing costs and growing global fish consumption
- Wild-caught fish for the wealthy, aquaculture products for low- and middle-income consumers.
- Emerging fisheries on mesopelagic resources develop to supply fishmeal to the aquaculture industry
- Geopolitical tensions over increasingly limited natural resources block international governance
- Technologies improve compliance, but market-driven solutions hinders effective fisheries management