Potential effects of spatial fishing restrictions and higher fuel prices on North Sea fisheries

Jonas Letschert¹, Prince Bonsu¹, Birgit Müller^{2,3}, Gunnar Dressler², Christian Möllmann⁴ and Vanessa Stelzenmüller¹

¹ Thuenen Institute of Sea Fisheries, Bremerhaven, Germany.
 ² Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
 ³ Brandenburg University of Cottbus-Senftenberg, Cottbus, Germany
 ⁴ Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Hamburg, Germany

Southern North Sea

MSEAS 2024 - Jonas Letschert

Marine spatial uses intensify

- Fisheries increasingly competes for space in the North Sea
 - Displacement of fishing effort
 - Longer steaming times
 - Limited access to fishing grounds
- Increasing fuel prices (Covid-19, Russo-ukrainian war)
- > Call for more sustainable fishing gears (e.g. ban of electric pulse gear)

Page 2

© Dogfish, <u>https://biogeodb.stri.si.edu/sftep/en/pages/random/1421</u> © Atlantic cod, Hans-Petter Fjeld, Ålesund, Norway **Objectives**

1017

Assess future scenarios and inform marine spatial management

Complex behavioral rules (beyond profit maximization) to enable agents to dynamically adapt to new situations

THÜNEN

Family

Study system

THÜNEN

Empirical data

FISHCODE – behavioral submodel

Validation

THÜNEN

Modelling one year —— Base scenario with averaged exogenous factors (economic & environmental)

- → Comparison to historic data (2012-2019)
- → Per fishing metier (i.e. fishing gear and target species)

Page 7

FISHCODE – Scenarios

Scenario name	Spatial fishing restrictions	Fuel price	Electric
			pulse gears
Base-run	OWF status of 2018	100%	yes
OWF2030+NTZ	OWF status of 2030 and NTZs	100%	Yes
OWF2040+NTZ	OWF status of 2040 and NTZs	100%	Yes
Fuel-300%	OWF status of 2018, no NTZs	300%	Yes
Fuel-600%	OWF status of 2018, no NTZs	600%	Yes
PUL-false	OWF status of 2018	100%	No

Modelling one year

Non-spatial scenario results

Fuel scenarios lowered fishing effort and profits for all metiers. Agents adapted by decreasing steaming time and increasing LPUE.

In comparison, **spatial fishing restriction scenarios** had a much weaker effect.

Banning electric pulse gear increased fishing effort and profits of equivalent gears (TBB).

OTB = Otter bottom trawl; **PUL** – Electric pulse gear; **TBB** – Beam trawl; **PLE** = plaice; **SOL** = sole; **NEP** = Nephrops; **CSH** = common shrimp

Fuel scenarios reduced spatial fishing effort systematically.

Spatial fishing restriction scenarios lead to a concentration of fishing effort (more than tripled in hotspots).

Banning pulse gears

... so what?

Most model outcomes from scenarios are as expected – will that be useful?

and

Yes

- Scenario results on fishing effort can be used to manage potential hotspots and mitigate harmful effects for the environment
- Scenario results on profits by metier and port could identify the needs for subsidy programs or alternative target species

- North Sea fisheries might look completely different in
 10 to 20 years
 - Few successors for family businesses

No

- Climate change
- Policies suggestions to phase out bottom trawling
- Windfarms, fuel prices, ect.

How could future fishery look like?

Co-location of fisheries and offshore windfarms

- ✓ FISHCODE as virtual laboratory for the German North Sea fisheries
- ✓ Agent decision-making enables to adapt to new situations (spatially & technically, i.e. ban of pulse gears)

- > Transformation of fishing sector makes it difficult to simulate scenarios of 10 to 20 in the future.
- > Instead of recreating the past in our models, we should try to simulate future vessels and fishing techniques

Thank you for your

attention!

www.seausetip.de

www.seawiseproject.org

jonas.letschert@thuenen.de

1

Contributed to FISHCODE

HELMHOLTZ Zentrum für Umweltforschung

Funded by the European Union