Integrating spatially dynamic ocean acidification on recreational values of coral reefs for the Main Hawaiian Islands

Oleson Lab Department Natural Resource and Environmental Management:

Ashley Lowe Mackenzie, Anders Dugstad, Lansing Perng, Carlo Fezzi, Kirsten L.L. Oleson

NOAA OCEAN ACIDIFICATION PROGRAM

Motivations

- Coral reefs provide numerous ecosystem services supporting life of more 1/2billion people (UN Envir. 2018)
- Calls for valuation ecosystem services for Capital Accounts, BCA, Assessments (NCAVES, Frontiers of BCA, NNA)
- Calculating economic value is tedious but important understand full impacts of our choices.

Previous EV Hawaii Coral Reefs

- Cesar, H.S. et al(2004).
 Economic valuation of the coral reefs of Hawai'i. *Pac. Sci.*
 - Most Comprehensive Hawaii Based Valuation study over 20yrs old (Cesar et 2004)
 - Estimates Total Economic value ~\$600million (2024 \$) with \$23.7 Mil from Resident Recreational Value

		X7.1 A 1.1 1	T 7 1 A 11 1		
	Consumer Surplus	of Direct Expenditure	of Indirect Expenditure	Multiplier Effect	Total Value Added
Snorkelers					
Residents	10.1	2.3	_	0.6	13.0
U.S. West	47.8	20.9	23.1	11.0	102.9
U.S. East	33.2	14.5	20.4	8.7	76.8
Japan	13.3	5.8	2.2	2.0	23.4
Canada	5.2	2.3	3.6	1.5	12.6
Europe	3.8	1.7	2.2	1.0	8.7
Other	11.8	5.1	6.8	3.0	26.7
Subtotal	125.2	52.6	58.4	27.8	264.0
Divers					
Residents	3.4	5.1	_	1.3	9.9
U.S. West	1.6	3.1	3.5	1.7	10.0
U.S. East	1.1	2.2	3.1	1.3	7.7
Japan	1.3	2.5	2.7	1.3	7.8
Canada	0.2	0.3	0.5	0.2	1.3
Europe	0.1	0.3	0.3	0.1	0.9
Other	0.4	0.8	1.0	0.5	2.7
Subtotal	8.1	14.3	11.3	6.4	40.2
Total recreational value					
Residents	13.5	7.5	_	1.9	22.8
U.S. West	49.4	24.0	26.7	12.7	112.8
U.S. East	34.3	16.7	23.6	10.1	84.6
Japan	14.6	8.3	4.9	3.3	31.1
Canada	5.4	2.6	4.1	1.7	13.9
Europe	3.9	1.9	2.6	1.1	9.6
Other	12.2	5.9	7.8	3.4	29.4
Total	133.3	66.9	69.7	34.2	304.2

 TABLE 3

 Recreational Value of Coral Reefs in Hawai'i in 2001 (in Million \$)

Our Team

Updating studies

- Fezzi, C., et al(2023). The economic value of coral reefs.... *Eco. Econ.*
 - Residents all users (direct use)
 - Spatial tied Ecological Conditions

Theoretical Framework Random Utility Model:

$$U_{ij} = V_{ij} + e_{ij}$$

Assume maximizes income, m, over exogenous x_j that influence demand for recreational trip

$$U_j^*(z_1(x_j,m), z_2(x_j,m,y), y) = U_j^*(x_j,m,y)$$

Where $z_1 \& z_2$, set of goods, m = income, $\frac{y \text{ ecosystem}}{y \text{ ecosystem}}$

Changes Ecosystem => Calculate Compensating Variation

Recreation Values

Coral Reefs increases utility when snorkeling available

	Model 3			
Variable	Coef.	Std. erro		
travel cost	-0.076 ***	0.002		
NOR	5.666 ***	0.129		
Site types:				
-coastal	-0.668 ***	0.193		
-city park	-0.780 ***	0.163		
-trail	0.703 ***	0.150		
-Haleakala	4.652 ***	0.247		
-olokini	4.489 ***	0.531		
site attributes:				
-parking	1.178 ***	0.074		
-showers	0.591 ***	0.062		
coastal site attributes:				
-lifeguard	0.086	0.067		
-pebbles	-1.266 ***	0.153		
-manmade	-0.970 ***	0.185		
-length = medium	0.117 *	0.070		
-length = large	0.322 ***	0.075		
-surf	-0.289 ***	0.057		
-swim	0.131 *	0.078		
-snorkeling	0.272 **	0.119		
-fish	0.037 ***	0.004		
-coral	0.008	0.007		
-snorkeling * fish	0.006	0.004		
-snorkeling * coral	0.020 **	0.008		
city park attributes:				
-playground	0.723 ***	0.061		
-sport fields	0.390 ***	0.071		
Log-likelihood	-17,021.25			
Pseudo-R ²	0.651			

Table 3

Assumptions Resident Recreational Value

Original WTP for sites:

Transfering to *New sites*, i, & *Population*, r

$$\widehat{WTP_{js}} = f(z_{js}, \hat{\beta}_s)$$

Where *j* = *site* & *s* = *population*

where
$$i \neq j \& r \neq s$$
:
 $\widehat{WTP_{ir}^{BT}} = f([z_{ir}^1 z_{js}^2], \hat{\beta}_s)$

Annual Value :

where m = *county income* :

$$\widehat{WTP_{ir}^{BT}} * \frac{m_r}{m_{s=Maui}} * Pop18_r * 365$$

Define Sites & Ecosystem Condition

Recreation Site:

- Google API & Tour Guides
 300-meter buffer:
- Coral Reef(Asner et al 2020)
- Resource Fish Biomass (NOAA 2017)

Resident Welfare Generated Annual

 \$113 Million (2024
 \$\$) which is .1% of Hawaii's Annual
 GDP

 Compared to Previous Study \$23.78M (2024 \$)

Spatially Simulated Scenarios for Hawaii's Nearshore Environment

Incorporating Ecological Modeling Under Climate Scenarios

Atlantis Model

• MSEAS Season 10:

Lansing Perng: Modeling the impacts of climate change on coral reef social-ecological systems: Insights from the Main Hawaiian Islands

- **Climate Scenarios**
- SSP1- SSP3
- CO2 Emission pathways
- Ocean Acidification & Warming

impacts

Identify Genus within Atlantis

Coral Reef Types

• Pocillopora, Porites branching, Porites massive, Montipora

Time Steps to 2100 per box and calculate each time step:

$$y_{bt} = \frac{\sum Vol_{bt}}{\sum Vol_{bt=0}}$$

Here *vol* is sum of volu

where *vol* is sum of volume coral reef in box, *b*, at time, *t*

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA-NC</u>

This Photo by Unknown Author is licensed under <u>CC BY</u>

Photo: Zac Forsman

Welfare Changes Predicted

-1.5M - -100K -100K - -10K

-10K - -1K -1K - -100

-100 - -10 -10 - -1

-1 - -0.5 -0.5 - 0

0 - 0.5 0.5 - 1

1 - 100 100 - 32K 0

25

SSP1 2100 Predicted Changes in Welfare

Annual Welfare Loss with Long Term Discounting Circular A-4

Shortcomings:

- Population Dynamics
- Explore Preference
- Marginal Benefit function
 Expanding Sectors:
- Expand to tourism sector values reef-adjacent dependence.
- Indirect values from housing

Thank You

Ashley Lowe Mackenzie

alowemac@Hawaii.edu

Oleson Lab NREM

http://www2.hawaii.edu/~alowemac/