

Iron fertilization can enhance the mass production of copepod, *Pseudodiaptomus annandalei*, for fish aquaculture

Guo-Kai Hong^{1,2}, Kwee Siong Tew^{1,2,*}

¹International Graduate Program of Marine Science and Technology, National Sun Yat-sen University, Taiwan ²Graduate Institute of Marine Biology, National Dong Hwa University, Taiwan *tewks@mail.nsysu.edu.tw

Abstract

Copepods are proven nutritious food sources for the mariculture/larviculture industry, however, unreliable methods for mass production of copepods are a major bottleneck. In this study, we modified a previously reported inorganic fertilization method (N: 700 μ g L⁻¹ and P: 100 μ g L⁻¹) by the addition of iron (Fe: 10 μ g L⁻¹, using FeSO₄·7H₂O) (+Fe treatment) and compared its suitability for copepod culture (*Pseudodiaptomus annandalei*) to the original method (control). The experiment was conducted outdoors in 1000 L tanks for 15 days. The addition of iron prolonged the growth phase of the phytoplankton and resulted in the production of significantly more small phytoplankton (0.45–20 μ m, average 2.01 ± 0.52 μ g L⁻¹ vs. 9.03 ± 4.17 μ g L⁻¹ in control and +Fe, respectively) and adult copepods (control: 195 ± 35 ind L⁻¹, +Fe: 431 ± 109 ind L⁻¹), whereas copepodid-stage was similar between treatments (control: 511 ± 107 ind L⁻¹ vs. +Fe: 502 ± 68 ind L⁻¹). Although adding iron increased the cost of production by 23% compared to the control, the estimated net profit was 97% greater. We concluded that inorganic fertilization, with the addition of iron (Fe: 10 μ g L⁻¹), could be an effective method for the mass production of copepods for larviculture.

Materials and Methods

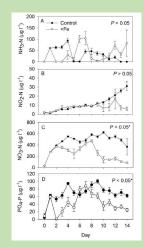
Design:

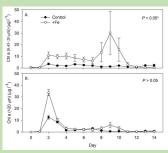
Control, N=5; N: 700 g L⁻¹ and P: 100 g L⁻¹ Treatment, N=5; N: 700 g L⁻¹ and P: 100 g L⁻¹ , +Fe

Inoculated P. Annandalei in each tank (10 ind L-1) on day 1

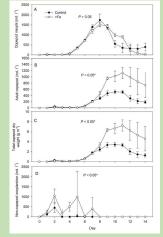
Did not inoculate monoculture algae

Duration: 15 days





(A) temperature, (B) salinity, (C) pH, and (D) dissolved oxygen in the control (N=5) and +Fe (N=5) (mean±SD)


Results

(A) NH₃-N, (B) NO₂-N, (C) NO₃-N, and (D) PO₄-P concentrations in the control and +Fe treatment tanks (mean±SD)

(A) smaller phytoplankton chlorophyll a concentration (0.45–20 m, g L-1), and (B) larger phytoplankton chlorophyll a concentration (20 m, g L-1) in the control and +Fe treatment tanks (mean \pm SD)

(A) copepod nauplii, (B) adult copepod, (C) total copepod dry weight, and (D) non-copepod zooplankton in the control and +Fe treatment tanks (mean±SD)

- By adding iron, the growth of phytoplankton lasted much longer
- Significantly higher density of copepodids and adult copepods
- Adding iron increased the cost, but the net profit was almost twice as high
- Adding iron to the inorganic fertilization method could be an effective way for the mass production of copepods as live feed for use in fish larviculture

Conclusion