Climate Change Induced Copper Toxicity in Two Key Arctic Copepod Groups

Nele Thomsen^{1,2}, Claudia Halsband³, Kristine Hopland-Sperre³, and Helena Reinardy^{1,4}

¹Scottish Association for Marine Science, Dunstaffnage, Oban, PA37 1QA, United Kingdom

²University of the Highlands and Islands, Inverness, IV3 5SQ, United Kingdom

³Akvaplan-niva, Fram Centre, Tromsø, Norway

⁴University Centre in Svalbard, PO Box 156, Longyearbyen, Svalbard, Norway

Arctic Copper Sources

Glacier Melt

Cu previously stored in the ice enters glacial meltwater streams.

Precipitation

Long-range atmospheric transport.

Permafrost Thawing

Increased groundwater flow, erosion, and riverine transportation rates and thus mobilisation of Cu stored in soil.

Mining

Acid drainage and residue metals in the soil enter riverine systems as permafrost melts.

Offshore Drilling / Mining

Produced water and drilling waste are by-products of the offshore oil industry.

Settlements

Wastewater, landfills, and traffic.

Aquaculture

Cu is used as anti-foulant on metal structures and fish cage nets.

Arctic Shipping

Longer ice-free periods increase seasonal shipping intensity. Cu is used on ship hulls as anti-foulant.

Long-range oceanic transport from e.g., the North Atlantic.

Copyright @Nele Thomsen Designed in BioRender.com

Study Site in Norway Jun – Jul 2023

Calanoid copepods

Calanus spp.

- Fjord, deeper water
- Mixture of C. finmarchicus & C. glacialis
- Boreal Arctic

Acartia longiremis

- Coastal, shallow water
- Arctic specialist

Methods

Net mesh size: 180 μm

10 Calanus spp. or 50 Acartia longiremis per beaker

Triplicate design

Impact Analysis

- Dose response modelling (LC50)
- Calanus sp. species ID
 - *G_150* DNA barcoding (Smolina *et al.*, 2014; Mol. Ecol. Resour.)
- Targeted gene expression (qRT-PCR)
 - Oxidative stress genes
 - DNA repair genes
- DNA damage through fast micromethod assay (FMM) (Schröder et al., 2006; Methods Mol. Biol.)

Mortality: A. longiremis more sensitive

• A. longiremis died at lower levels in response to Cu and temperature as individual stressors compared to Calanus spp.

DNA damage: Calanus spp. more sensitive

Temperature significantly increased *Calanus* spp. DNA damage (GLM, p < 0.05)

DNA damage: Calanus spp. more sensitive

Cu significantly increased *Calanus* spp. DNA damage (One-way ANOVA, p < 0.05)

Results – DNA repair gene expression

- Downregulation of DNA repair
 - Cu inhibits DNA repair
- High variation between individuals
 - plasticity?
- Temperature significantly induced oxidative stress gene cat expression (GLM, p < 0.05)
 - oxidative DNA damage

Conclusion

longiremis

- Temperature causes reduction of genetic integrity of Calanus spp. but not A.
- Cu may induce crosslinks and suppress DNA damage repair mechanisms in both species
 - Impact of genetic instability on future populations?
- High intraspecific variability: Resilience by Diversity?
- Molecular mechanisms can uncover species differences in sensitivities to stress

Thank you for Listening!

For further questions:

20002825@uhi.ac.uk or nele.tho@gmx.de

Scottish Association for Marine Science

1st Supervisor **Helena Reinardy**

Akvaplan

Co-Supervisor

Great Lab Technician Claudia Halsband Kristine Hopland Sperre

