

Lipid biomarkers and stable isotopes reveal disconnect between feeding dynamics of mesopelagic zooplankton and a spring diatom bloom in the Scotia Sea

Eloïse Savineau

Kathryn B. Cook, Sabena J. Blackbird, Gabriele Stowasser, Konstadinos Kiriakoulakis, Calum Preece, Sophie Fielding, Anna C. Belcher, George A. Wolff, Geraint A. Tarling and Daniel J. Mayor

Why study zooplankton in the mesopelagic?

Study site

COMICS programme funded by NERC.

Research cruise DY086 (12th Nov. - 19th Dec. 2017).

3 visits to the P3 sampling site: P3A, P3B, P3C

Nitrogen stable isotope analysis

Lipid biomarkers

Some important fatty acids:

 \bigcirc 20:5(n-3) **EPA** – diatoms

22:6(n-3) **DHA** - dinoflagellates

20:1(n-9) & 22:1(n-11) herbivorous calanoid biomarker

18:1(n-9) – general zooplankton/animal biomarker

Particulate organic matter (POM)

Station P3 was characterised by a phytoplankton bloom dominated by large diatoms, with live, intact diatoms at depths within and below the epipelagic zone.

Analysis of POM $> 53 \mu m$

Fatty alcohols as indicators of zooplankton not POM.

Higher abundance of fatty alcohols between ~150 - 250 m.

Presence of small particle-associated copepod (e.g. *Oncaeidae* (A) and *Oithonidae* (B)) at the boundary of the epi- to mesopelagic?

Stable isotope analysis

Stable isotope analysis

Fatty acid analysis of zooplankton

C. acutus - herbivorous ; diapausing Large lipid stores (~50% of dry weight) Diatom markers ~29%

R. gigas - herbivorous ; diapausing Large lipid stores (~40% dry weight) Diatom markers ~40%

Paraeuchaeta – carnivorous ; non-diapausing

Importance of considering physiology

Conclusion

The lipid and stable isotope data highlight the importance of considering zooplankton physiology when investigating trophic ecology and tracing carbon cycling.

- → Extent to which herbivorous/diapausing species do or do not interact with the spring bloom.
- → The decoupling between feeding dynamics of the zooplankton and the spring diatom bloom will influence the quality/quantity of organic matter leaving the upper mesopelagic.
- → Presence of particle-associated copepods at the boundary of epi- to mesopelagic may have an important role in the attenuation of POM.

Thank you

Acknowledgements:

The authors thank the crew of the R.R.S. Discovery and participants of cruise DY086 for help collecting samples.

This work was supported by:

Natural Environmental Research Council (NERC) Large Grant, COMICS (NE/M020762/1; NE/M020835/1) INSPIRE DTP NERC Grant (NE/S007210/1)

Eloïse Savineau
PhD student, University of Southampton
eloise.savineau@soton.ac.uk

@eloisesavineau

