Long-term warming and human-induced plankton shifts at a coastal Eastern Mediterranean site

Kleopatra Kalloniati PhD Candidate, NKUA

Christou Epameinondas ², Kournopoulou Antonia ¹, Gittings John Anthony ¹, Theodorou Iason ¹, Zervoudaki Soultana ² & Raitsos Dionysios ¹

¹Department of Biology, National and Kapodistrian University of Athens, Athens 15772, Greece ²Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Anavyssos 19013, Attica, Greece

Advancing understanding of Cumulative Impacts on European marine biodiversity, ecosystem functions and services for human wellbeing.

Phytoplankton are responsible for nearly half of the global net primary production.

Zooplankton are important for:

- -Control on phytoplankton biomass
- -Energy transfer through the marine food web

(Bucklin *et al.*, 2021)

Phenology

Phenology refers to the timing of annually recurring life cycle events.

Phenological indicators are particularly sensitive to climate change (Edwards & Richardson, 2004; Hughes, 2000)

In hot water: zooplankton and climate change 3

Anthony J. Richardson

ICES Journal of Marine Science, Volume 65, Issue 3, April 2008, Pages 279–295,

https://doi.org/10.1093/icesjms/fsn028

Published: 11 March 2008 Article history ▼

Platt *et al.* (2003)

Mediterranean Sea

Chlorophyll-a averaged over the period September 1997 to December 2020, CMEMS

- Low Nutrient Low Chlorophyll-a system
- Climate change hot-spot Warming trend

Mediterranean Sea

Chlorophyll-a averaged over the period September 1997 to December 2020, CMEMS

- Low Nutrient Low Chlorophyll-a system
- Climate change hot-spot Warming trend
- Coastal marine ecosystems elevated nutrient inputs

Study Area

Main pollution source of the Saronikos Gulf:

Wastewater discharge

~4 million inhabitants of Athens ~50% of Greece population

Untreated waste into surface waters

1994

Study Area

Main pollution source of the Saronikos Gulf:

Wastewater discharge

~4 million inhabitants of Athens ~50% of Greece population

Untreated waste into surface waters

Primary stage

Discharge at 63 m 2 km from the coast

Psittalia Waste Water Treatment Plant

1994

2004

Study Area

Main pollution source of the Saronikos Gulf:

Wastewater discharge

~4 million inhabitants of Athens ~50% of Greece population

Untreated waste into surface waters

Primary stage

Discharge at 63 m 2 km from the coast

Psittalia Waste Water Treatment Plant

Significant decrease in nutrient concentrations & organic load

Improvement of ecological quality status

Pavlidou *et al.*, 2014

1994

Aims

Investigate:

- The interannual variability of chlorophyll-a and mesozooplankton biomass (since 1988)
 - Shifts in phenology
 - Changes in copepod and cladoceran abundances

within a warmer, anthropogenically-impacted coastal region of the Saronikos Gulf.

26 years of biweekly *in situ* measurements

Location

Study site Depth: 12 m

Period

from **Nov-1988** to **Apr-2015**

Time interval

~**14 days** 631 samples in total

Parameters

Mesozooplankton Biomass

Chlorophyll-a Concentration

Method

 $200\,\mu m$ WP-2 net

Dry-weight method (Omori & Ikeda, 1984)

Sampling depths: 1m, 5m and 10m

GF/F filters (0.7 μ m)

Fluorometric determination of acetone extracts (Yentsch and Menzel, 1963)

26 years of biweekly *in situ* measurements

Location

Study site Depth: 12 m

Period

from **Nov-1988** to **Apr-2015**

Time interval

~**14 days** 631 samples in total

Parameters

Mesozooplankton Biomass

Chlorophyll-a Concentration

Data Processing

Two study periods: before & after secondary wastewater treatment

P1: 1988-2004 P2: 2005-2015

Location

Station S11Depth: 78 m5 km offshore

Period

from **Feb-1987** to **Aug-2009**

Method

200 μm WP-2 net

Parameters

Total Copepod & Cladoceran Abundance

85 mesozooplankton samples in total

satellite-derived data

SST_MED_SST_L4_REP_OBSERVATIONS_010_021

EU Copernicus Marine Environment Monitoring Service (CMEMS)

Reprocessing of collated level-3 climate data from ESA Climate Change Initiative (CCI), the Copernicus Climate Change Service (C3S) & the AVHRR Pathfinder dataset version 5.3

Level 4, interpolated, gap-free

Temporal Resolution **1-day**

Spatial resolution ~ **5.5** km

Available from 1982-present

Averaged over an Inner Saronikos Gulf region (37.8, 37.92N, 23.60, 23.74E)

Covering the period: 1988-2015

Phenology Metrics

Kournopoulou et al., 2024

Phenology algorithm Racault *et al.*, 2012, 2014, 2015

ClimatologyBiweekly

Long-term threshold criterion
Median + 5%

Anomalies Climatology - threshold

Cumulative sum of anomalies

Phenology Metrics

Phenology algorithm

Racault *et al.*, 2012, 2014, 2015

ClimatologyBiweekly

Long-term threshold criterion
Median + 5%

AnomaliesClimatology - threshold

Gradient of the cumulative sums

Kournopoulou et al., 2024

Chl-a vs. Zooplankton biomass Annual timeseries

Chl-a vs. Zooplankton biomass Annual timeseries

Weak grazing control

Chl-a vs. Zooplankton biomass Annual timeseries

Lower surface nutrient concentrations (Siokou-Frangou *et al.,* 2009)

Chl-a decrease | Mesozooplankton biomass increase

Chl-a vs. Zooplankton biomass Annual timeseries

P2: Improved grazing control

Zooplankton biomass vs. SST Annual timeseries

Secondary wastewater treatment stage

Zooplankton biomass vs. SST Annual timeseries

Secondary wastewater treatment stage

Zooplankton biomass vs. SST Annual timeseries

P2:
Abrupt reversal in the interannual relationship between mesozooplankton biomass and SST after 2004

Secondary wastewater treatment stage

Abrupt reversal in the interannual relationship between mesozooplankton biomass and SST after 2004

Zooplankton biomass vs. **SST**

-Annual timeseries

-Summer timeseries

Results

Seasonal cycles & Phenological shifts

Biweekly climatologies

Seasonal cycles & Phenological shifts

Biweekly climatologies

Mean SST increase in P2: -

February – March: ~0.5 °C

April – September: ~0.8 °C

Seasonal cycles & Phenological shifts

Biweekly climatologies

Seasonal cycles & Phenological shifts

Biweekly climatologies

Shifts in plankton phenology:

An interplay of warming and improved water quality in the region

Data Processing

Annual basis

Separation between:
-1988-2004 (P1)
-2005-2009
&
-winter (as average of February & March)
-summer (as average of June & July)

Data Processing

Annual basis

Separation between:
-1988-2004 (P1)
-2005-2009
&
-winter (as average of February & March)
-summer (as average of June & July)

Copepods were favored by the ecological conditions that prevailed after 2004.

Winter: 56% increase

Summer: 35% increase

Concluding Remarks

An **interplay** of long-term human-induced pressures (warming and wastewater discharge) led to shifts in plankton biomass and phenology in Saronikos Gulf.

Interestingly, once the Gulf showed signs of recovery (2004), the signal of oceanic warming in plankton ecological indicators became apparent.

Concluding Remarks

An interplay of long-term human-induced pressures (warming and wastewater discharge) led to shifts in plankton biomass and phenology in Saronikos Gulf.

Interestingly, once the Gulf showed signs of recovery (2004), the signal of oceanic warming in plankton ecological indicators became apparent.

Future plans

- Revisit the historical samples and reanalyze them to estimate plankton community structure
- Assess potential links with fisheries datasets.

Thank you for your attention!

Kleopatra Kalloniati kkalloniati@biol.uoa.gr

Advancing understanding of Cumulative Impacts on European marine biodiversity, ecosystem functions and services for human wellbeing.

