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INTRODUCTION

Lower trophic levels organisms, and in particular zooplankton, are key components of
marine food-webs and play an essential role in nutrient cycles, transfer of energy to upper
trophic levels, and fish recruitment trough larval fish survival.
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Image From: The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Lomartire et
al. (2021).
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Seasonal fluctuations are expected to be
one of the main drivers of variation within
plankton food-webs

(A) Abundance

time

(B) Food web A
® @

Qﬁ \K i

(C) Topological
indicators

time

Qlivier, P. et al. (2019). Explaring the terrporal variability of a food web using long-term
biomonitoring data. Ecography.



INTRODUCTION

SEASON
Seasonal fluctuations are expected to be
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Pelagic food-webs are size-structured.
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INTRODUCTION

.
SEASON SIZE FEEDING STRATEGIES
Seasonal fluctuations are expected to be Pelagic food-webs are size-structured. Optimal foraging in marine fish larvae
one of the main drivers of variation within Body size determines predator-prey Trophic divergence (varying or divergent
plankton food-webs interactions (on average predators are x10 trophic roles among different species) vs
A — C) bigger than their prey) C‘) trophic similarity.
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foraging in marine fish larvae. Joumal of Animel Ecology, 92(5), 1016-1028. 5
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DATA: Species composition, size (mm), and stable isotopic signatures (6:3C, &*°N) for 18 taxa of mesozooplankton and 13
taxa of fish larvae collected in winter, spring, and autumn for a total of 552 measurements.
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Image modified from From: Eloranta, A. (2013). The variable position of Arctic charr (Salvelinus alpinus (L.)) in subarctic lake food webs. Jyvéskyld studies in biological and environmental science, (261).



SEASONAL VARIATIONS AND
SIZE-STRUCTURE

Figure 2 : Variability (seasonal, inter, and
intra-specific) of plankton on baseline-
adjusted isotopes values in the EEC. Species
are ordered based on their averaged
SN

adjusted values. Seasonal mean values are
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NICHE SPACE: TROPHIC DIVERGENCE VS TROPHIC SIMILARITY
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Figure 3: Seasonal variation of the isotopic niche space occupied by the plankton community in the EEC. The black polygon illustrates
the overall theoretical isotopic niche space (equivalent of the richness isotopic functional diversity metric), which can be compared to
the seasonal realized niches (in blue, green, and orange for winter, spring, and autumn, respectively). Seasonal data are represented as

black dots, and species at the edges, reflecting those with a higher trophic divergence, are identified. o



SEASONAL VARIATIONS AND SIZE-STRUCTURE
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Figure 4: Seasonal and size effects on 8N, ;o4 and 8"°C,;; .q values of the plankton community. Lines represent the predicted
values of the Linear Mixed Effect Models with "Season" and "size" as fixed factors and a nested structure of "Species/size" as a
random effect. Zooplankton values are illustrated as triangles, and fish larvae are represented as circles, colored according to the
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FOOD-WEB TOPOLOGY
AND ENERGY FLUXES
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Figure 5: Diet composition (% diet) of plankton size-classes to predatory plankton. Values represent mean
values and standard deviation posterior distributions of the MixSIAR Baysian models. Smooth dashed

lines are for illustration purposes only and highlight main patterns or dominant size-classes to the diet.
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CONCLUSION
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REMAINING KNOWLEDGE GAPS AND FUTURE DIRECTIONS

e Other sources of variation:

v" There are multiple sources of variation and uncertainties when using
stable isotopes to elucidate trophic patterns. For instance, possible inter-
annual variations on plankton stable isotopes were not explored in this
study because of data limitations.

* Missing species:

v" Copepods represent the majority (~90%) of the mesozooplankton in the
EEC. However, gelatinous zooplankton (Cnidaria, Ctenophora, Tunicata)
are also frequently encountered, and can occasionally occur in large
numbers with biomass exceeding that of fish in oligotrophic waters.

Joint information on crustaceans, gelatinous zooplankton and
ichthyoplankton can be used as indicators of energy flow and
trophic pathways, which should inform on how planktonic
communities respond to environmental changes.

(e.g. OSPAR indicators, Marine Strategy Framework Directive-D 1—Biological Diversity D4—Marine Food-
webs, https;//oap.ospar.org/).
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of eutrophication or change in water column stability
and result in less desirable food webs
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Size-based indicator of the efficiency of energy flow
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Indicator of energy flow and balance between
primary producers and primary consumers

Pelagic diatoms and tychopelagic (benthic) diatoms
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Indicator of benthic (sea floor) disturbance and
frequency of resuspension events

Plankton lifeform pairs and ecological rationale for their selection.
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and reproductive output of benthic versus pelagic
fauna

Courtesy of the Integration and Application Network, University of

Maryland Center for Environmental Science (ian.umces.edu/symbols/).
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https://oap.ospar.org/

Thank you !
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