

From plankton to Sardine

Spatial patterns in the trophic transfer of essential nutrients

Revealed by taxonomic and fatty acid analysis

Carolin J. Neven¹, Alain Lefebvre², David Devreker², Guillaume Wacquet², Philippe Soudant⁴, Paul Marchal¹, Fabrice Pernet⁴ and Carolina Giraldo¹

¹ Ifremer, HMMN, Laboratoire Ressources Halieutiques, F-62200 Boulogne-sur-Mer, France

² Ifremer, LITTORAL, F-62200 Boulogne-sur-Mer, France

³ Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France

⁴ Univ Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France

Essential fatty acids

LIPIDS

Essential fatty acids

LIPIDS

TRIGLYCERIDE

Essential FA

Essential FA

- Membrane functionality
- Hormones
- reproduction
- Brain development and functioning

Essential FA

- Membrane functionality
- Hormones
- reproduction
- Brain development and functioning

Methods

Taxonomy

Phytoplankton (Flowcam)

Zooplankton (Zooscan)

Fatty acid analysis

(Gas-chromatography)

Taxonomy

Phytoplankton (Flowcam)

Zooplankton (Zooscan)

Methods

SAMPLING & Sample and statistical analysis

Fatty acid analysis

(Gas-chromatography)

Taxonomy

Phytoplankton (Flowcam)

Zooplankton ____ spati

PCA spatial pattern

PCA spatial pattern

Methods

Fatty acid analysis

(Gas-chromatography)

PCA spatial pattern

GLMM/GAM

→ Factors
influencing FA
of sardine

Taxonomy

Phytoplankton (Flowcam)

Zooplankton (Zooscan) PCA spatial pattern

PCA spatial pattern

dinoflagellates + Calanus spp. 18:5(n-3)

EPA/DHA

22:1(n-11)

wax esters (µg/mg)

diatoms

16:2(n-4)

16:3(n-4)

16:4(n-1)

EPA/DHA

31

Results & Discussion

dinoflagellates + Calanus spp.

18:5(n-3)

EPA/DHA

22:1(n-11)

wax esters (µg/mg)

diatoms

16:2(n-4)

16:3(n-4)

16:4(n-1)

EPA/DHA

32

Results & Discussion

dinoflagellates + Calanus

spp.

18:5(n-3)

EPA/DHA

22:1(n-11)

wax esters (µg/mg)

diatoms

16:2(n-4)

16:3(n-4)

16:4(n-1)

EPA/DHA

33

Spatial differences: Taxonomic composition

Results & Discussion

Spatial differences: Taxonomic composition

Spatial differences: Taxonomic composition

dinofalgellates

dinofalgellates

Results & Discussion

dinofalgellates

Results & Discussion

dinofalgellates

Results & Discussion

Temora longicornis Acartia spp.

dinofalgellates

Results & Discussion

Results & Discussion

Spatial variability in FA profile

Spatial variability in FA profile

Spatial variability in FA profile

2)

Are small pelagic fish spatial smoother due to mobility ?!

Spatial variability in FA profile

2)

Are small pelagic fish spatial smoother due to mobility ?!

How big is the influence of biometry in trophic transfer?

GLMM or GAM with beta distribution

GLMM or GAM with beta distribution

GLMM or GAM with beta distribution

+

GLMM or GAM with beta distribution

proxys physiology

Sardine FA %

Zooplankton FA %

GLMM or GAM with beta distribution proxys physiology

Condition

Sardine FA % + TAG/Sterol + Le Cren's index + index

GLMM or GAM with beta distribution proxys physiology condition spawning Sardine Zooplankton Le Cren's + TAG/Sterol FA % FA % index nonspawning

GLMM or GAM with beta distribution proxys physiology condition spawning Sardine Zooplankton Le Cren's + TAG/Sterol region FA % FA % index nonspawning

DHA 22:6(n-3)

DHA 22:6(n-3)

DHA 22:6(n-3)

Trophic transfer:

Results & Discussion

DHA 22:6(n-3)

EPA 20:5(n-3)

sardineEPA = zooEPA + TAG/ST + LeCren + spawning + region

EPA 20:5(n-3)

EPA 20:5(n-3)

EPA 20:5(n-3)

Conclusion

Conclusion

Spatial variability in FA profile

2)

Are small pelagic fish spatial smoother due to mobility ?!

Conclusion

Conclusion

Conclusion

Conclusion

Thank you!

This project was founded by the IFREMER Scientific Direction through the project "FORESEA" and by the region Hauts-de-France. Additional support was provided by the graduate school IFSEA that benefits from a France 2030 Grant (ANR-21-EXES-0011) operated by the French National Research Agency.