

How eastern Bering Sea climate variability affects the distribution of walleye pollock early life stages

Colleen Petrik

Janet T. Duffy-Anderson, Franz Mueter, Katherine Hedstrom, Seth Danielson, Enrique Curchitser, Steven Barbeaux

PICES ASC 2013 Nanaimo

EASTERN BERING SEA

SEA ICE AND WATER TEMPERATURE

WINDS AND CURRENTS

Oct-May wind direction anomaly

Winter cross-shelf Ekman transport

Danielson et al. 2011

WINDS AND CURRENTS

Oct-May wind direction anomaly

Winter cross-shelf Ekman transport

Danielson et al. 2011

Monthly averaged currents at M2

POLLOCK ELS DISTRIBUTION

Adults avoid cold water → Change in spawning areas

More on-shelf in warm years

Adults avoid cold water → Change in spawning time

Number of days +/- avg with sea ice in Mar and Apr

Egg count anomaly

Later in cold years

Warm

Cold

Smart et al. 2012 Julian Day

POLLOCK ELS DISTRIBUTION

Similar to: Currents Spawning

POLLOCK QUESTIONS

Does interannual climate variability result in different distributions of pollock early life stages?

What are the dominant physical mechanisms responsible for the different distributions?

- Wind effects on transport
- Temperature/ice effects on spawning location
- Temperature/ice effects on spawning time

COUPLED MODELS

- ROMS NEP-6
 - Velocities
 - Vertical Diffusivity
 - Light
 - Temperature
- Tracmass
 - Offline particle tracking
 - Diffusion
 - Biological model
 - Development/Growth
 - Vertical behavior

NEP-6 domain with bathymetry (m)

POLLOCK BIOLOGICAL MODEL

- Development/Growth
 - Function of temperature
- Vertical behavior
 - Eggs and yolksac passive (neutrally buoyant)
 - Preflexion and late restricted to mixed layer

POLLOCK BIOLOGICAL MODEL

Spawning polygons for 2 wk periods based on spawning climatology (e.g. Mar wks 1-2)

Same spawning locations in warm and cold years

POLLOCK BIOLOGICAL MODEL

Spawning polygons for 2 wk periods based on spawning climatology (e.g. Mar wks 1-2)

Contracted off-shelf

Expanded on-shelf

Date = Mar 1

POLLOCK BIOLOGICAL MODEL

Date = Apr 10

Spawning polygons for 2 wk periods based on spawning climatology (e.g. Mar wks 1-2)

Date = Mar 1

OBSERVED PATTERN

EFFECT OF TRANSPORT

-cold

— warm

EFFECT OF SPAWNING EXPANSION

cold

— warm

EFFECT OF SPAWNING CONTRACTION — cold

EFFECT OF SPAWNING DELAY

-cold

— warm

POLLOCK MODEL RESULTS

Does interannual climate variability result in different distributions of pollock early life stages?

Yes

What are the dominant physical mechanisms responsible for the different distributions?

- Wind effects on transport
 - Small
- Temperature/ice effects on spawning location
 - Contraction > Expansion
- Temperature/ice effects on spawning time
 - Small

• Why does contraction of spawning areas result in more offshore centers of gravity?

- Why does contraction of spawning areas result in more offshore centers of gravity?
- Related to currents

- Why does contraction of spawning areas result in more offshore centers of gravity?
- Related to currents
 - Outer shelf currents more alongshelf

- Why does contraction of spawning areas result in more offshore centers of gravity?
- Related to currents
 - Outer shelf currents more along-shelf
 - Middle and shelf currents more across-shelf

Expectations with climate change

Decreased sea ice extent; Increased SST

Expectations with climate change

Expectations with climate change Zooplankton wet weight (mg m⁻³) Decreased sea 2000 ice extent: **Increased SST** 1000 Spawning 1950 1980 2000 areas NOT YEAR contracted Less overlap with big, energy-rich prey More overlap with small, Pollock ELS energy-poor prey more on-shelf

Adult pollock Expectations with climate change Decreased sea ice extent: **Increased SST** Spawning areas NOT contracted Less overlap with big, energy-rich prey More overlap with small, Pollock ELS energy-poor prey more on-shelf More overlap with predators

Expectations with climate change

ACKNOWLEDGMENTS

BEST Synthesis

- NSF
- Janet Duffy-Anderson
- Franz Mueter
- Kate Hedstrom

FOCI & AFSC

UAF

