Mechanism of warming the Okhotsk Sea Intermediate Water, from consideration on seasonal cycle

Fisheries Oceanography Research Studio "Oyashio-Ya"

Makoto Kashiwai

1. Introduction: 1-1. Facts and explanation failed

- ☐ Fact: (Nakanowatari et al., 2007)
 - ✓ Warming and DO-decreasing 50yr trend at the intermediate isopycnal surfaces exists in the Okhotsk Sea and spread toward Subarctic Pacific.

□ Tentative explanation:

- ✓ Effect of atmospheric warming from surface via DSW to OKIW.
- Decreased DSW production → weakening of cooling IntW → Warming;
- "." Increased surface stratification \rightarrow weakening DO supply \rightarrow DO decrease;

□ Facts against this explanation:

- DO decrease by increased surface stratification is the only event of warm season for the Okhotsk Sea. In winter, at the open Subarctic Pacific and the open sea-ice area of the Okhotsk Sea, the surface thermocline disappears during winter!!
- Warming beyond $27.1\sigma_0$ is deeper than the limit of ventilation by DSW in the Sea of Okhotsk, shown by CFCs distribution (Wong *et al.*, 1998)!!
- Cannot explain associated S increase necessary as facts on isopycnals!!
- OKIW can mix with the subsurface temperature max layer and the DO min layer, during all seasons!!

1-2. Revisit the evidence to see all the aspects

Depth and Depth-interval	changes of	isopycnals
1976/2026.		

Isopycnals	De	Depth		^ D	
[kg/m³]	1976	2026	$\Delta_{t}D$	$\Delta_{d}D$	
26.4	61	66	+5		
26.5	 75	100	+25	+20	
26.6	120	165	+45	+20	
26.7	179	250	+71	+26 +42	
26.8	250	363	+113	- 	
26.9	400	453	+53	-22	
27.0	500	531	+31	-31	
27.1	600	600	0	-73	
27.2	800	727	<u> </u>	+37	
27.3	891	855	-36	+36	
27.4	1000	1000	0		

- □ Data: Climatic Atlas of the North Pacific Seas 2009, The Sea of Okhotsk, NOAA
- ☐ T, S, DO and Depth anomalies in the sub-region O-1 after 50yrs :
- **Deepening** isopycnals above 27.1 σ_0 ; stable 27.1 σ_0 at 600m; shallowing below
 - = Sharpening of pycnocline at $27.1\sigma_0$:
 - Deeper potential vorticity maximum layer = pycnocline (Freeland et al., 1998);
 - Lower boundary of atmospheric ventilation shown by CFCs (Wong et al., 1998);

2. Scientific Question

- ☐ Question: What causes T/S/D increase and DO decrease at intermediate isopycnal surfaces??
 - ✓ Explanation must be clear on the watermass processes in terms of:
 - Seasonal cycle of OKIW = Seasonal cycle is the largest forcing on the planet of Earth;
 - Cause-and-effect relation = interactions between water elements as substantial objects = This is 'explanation' in physics.

✓ Deduced Question:

- How to identify water elements as substantial objects, whose statevariables can be measured and described by mass-balance-rule?
 - TσV-diagram
- How to identify forcing factors causing changes in IntW properties?
 - 3D-T/S/DO-climograph;
 - 3D-ΔT/S/DO-diagram

2-1a. ToV-analysis: Winter

2-1b. ToV-analysis: Spring

2-1c. ToV-analysis :Summer

2-1d. ToV-analysis Autumn

2-2. Element Waters Identified by ToV-diagram

- The components of the Okhotsk Sea water are identified as heaps of mountains or plateaus in TσV-diagram, as bounded by stable valleys or cliffs (*i.e.* pycno/thermocline or front) and named as *Element Waters* of the Okhotsk Water.
- ☐ Following four element waters are identified as the components of Okhotsk Water:

Element Water	Symbol	σ ₀ Range (kg/m³)	T _{pt} Range (degC)
Surface Water	SfW	< 26.4	
Subzero Water	SbzW	26.4 ≤	≤ 0
Intermediate Water	IntW	26.4 – 27.0	
Deep Water	DpW	27.1 ≤	

- ☐ IntW and DpW show *significant seasonal changes*.
- \square The *isopycnal surface* **27.1** σ_0 appears as the boundary between IntW and DpW.
- ☐ For the each element water, the average Tpt, S, and DO were calculated as volume-weighted-mean.

3. Seasonal Cycle of IntW: 3-1. 3D-Climograph

- □ 3D-Climograph: a diagram connecting seasonal anomalies from annual mean, and displacement by trend anomaly for 10yrs, on Tpt/S/DO-coordinate;
 - Winter: T≈0 ; S≈ Min ; DO = Max;

FW/DO input by mixing w/ SfW?:

• Spring: T = Min; S = Min; $DO \approx 0$ --;

falling down of spring bloom ?:

• Summer: T ≈ 0 ++; S = ++; DO = -;

T/S/DO input by mixing w/???:

Autumn: T= Max --; S = Max ; DO = Min;

Cooling by ventilation ???

3-2. ∆T/S/DO-diagram a. Winter

→ : Mean time-change rate of Tpt/S/DO of IntW at winter,

ΔΤρt/ΔS/ΔDO: Difference between Tpt/S/DO of IntW and other element waters possible to mix with,

Forcing Vector in the same direction: ΔOk-SbzW

3-2. \(\Darksymbol{\Darksymbo

→ : Mean time-change rate at spring

Forcing Vector in the same direction:

ΔOk-DpW

ΔEkc-DpW

ΔEkc-IntW

3-2. $\Delta T/S/DO$ -diagramc. Summer

→ : Mean time-change rate at summer

Forcing Vector in the same direction:

ΔOk-DpW

ΔEkc-DpW

ΔEkc-IntW

3-2. $\Delta T/S/DO$ -diagramd. Autumn

→ : Mean time-change rate at autumn

Forcing Vector in the same direction:

ΔOk-SbzW

- + ΔOk-SfW
- + ΔEkc-SfW

3-4. Identified forcing factors

- ☐ The forcing factors can be divided into 3 categories:
 - **Primary Factor**(s), of which increase makes time-change of IntW,
 - Reverse Factor(s), of which decrease makes time-change of IntW,
 - Subsidiary Factor(s), of which changes do not affect straight to IntW.

Identified Primary/Reverse Forcing Factors by ΔTSDO-diagram

	_		<u> </u>	-		
Canan	Int\	N Cha	ange	Duine our Footou	Daviera Factor	
Season	Tpt	S	DO	Primary Factor	Reverse Factor	
Winter	_	-	+	Ok-SbzW , Q/F*	Ekc-IntW, Ekc-DpW, Ok-DpW	
Spring/ Summer	•	+	-	Ekc-DpW, Ok-DpW, Ekc-IntW	Ok-SbzW	
Autumn	=	_	+	Ok-SfW, Ok-SbzW, Ekc-SfW	Ekc-IntW, Ekc-DpW, Ok-DpW	

^{*}During Dec - Mar, Ok-IntW surfaces at the open-ice stations.

DpW contributes to **S increase** in **spring/summer!**

4 Consideration on long-term warming: 4-1. Seasonal cycle to Climate Change

- □ Volume of IntW indicates seasonal changes alternating between DpW: no show for economy of time
 - ✓ Seasonal change in depth of the boundary between (IntW/DpW) :
 - → Response of isopycnal surface to spin-up/down of WSAG;
 - → Response to seasonal change in strength of Siberian Monsoon;
- ☐ Enhanced atmospheric circulation can enhance the trend today:
 - Winter monsoon → Spin-up/down of WSAG;
 - Along-shore wind → Coastal upwelling;
 - Westerly wind → enhanced upper-layer effluent and lower-layer influent
 → enhanced contribution of DpW to IntW.

4-2. Up/downwelling of DpW and meridional circulation of the NW-Pacific Subarea #123

Boundary σ ₀ (kg·m ⁻³)	Up/Down Welling at the boundary	Watermasses in the Pacific*	Element Water in the Okhotsk Sea	
24.781		N-Pac CtrW	Ok_SfW	
25.561	Down Welling	IN-FAC_CLIVV		
26.131	Down Welling			
26.495		N-Pac IntW	IntW	SbzW
26.755	Down Welling	N-Pac_IIILVV		
26.935	Down Welling			
27.219	Down Welling	AA IntW	DpW	
27.407	Down Welling	AA_IIICVV		
27.583	Up Welling	N-Pac_DpW		
27.739	Up Welling	Upr-CrAA_DpW		
27.802	Up Welling	Lwr-CrAA_DpW		

^{*}Modified incorporating Tomczak et al., 2005 (Composed from Macdonald et al., 2009)

 $[\]checkmark$ Pacific Ocean: DpW upwelling and downwelling is separated at 27.4 σ_0 .

[✓] Okhotsk Sea: the deepest layer is, in annual mean, at 27.69 σ_0 .

Coincidence with contribution of DpW in formation of OKIW!

5. Conclusions:

- ☐ Major forcing factor for the **seasonal cycle of Ok-IntW**:
 - Change in Ok-IntW at spring / summer: T+/S+/DO-:
 - → caused by **DpW** mixing into Ok-IntW.

 coincides with 3D-circulation Pacific Ocean by Macdonald et al., 2009
 - → result of strong vertical tidal mixing at the entrance.
- Possible forcing factor for the **long-term trend** in Ok-IntW:
 - Amplified seasonal undulation of isopycnals at the effective sill depth of Kuril Strait:
 - → results of NPSAG response to changes in atmospheric circulation .

6. Proposals:

☐ To understand seasonal dynamics, PICES should coordinate *Seasonal*Observations on PICES Waters in WOCE-specifications, for Next Generations: