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Kappel et al. in prep. 

A wide range of marine habitats across the globe have experienced 
ecosystem shifts from the intertidal to the open ocean. 
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Common Examples  



Ø  Identify nonlinearities in driver-response relationships 

Ø  Identify thresholds in those relationships 

Ø  Test the utility of leading indicators of abrupt change 

Calls for more research to… 
	  

Improve knowledge and understanding of ocean tipping 
points, their impacts, and their relevance to management 
 
 



‘Generic’ early warning signals 
• Metric-based indicators of ecosystem instability based on 

the complex systems theory of critical transitions and 
alternate stable states.  

 

•  ‘Critical slowing down’ in population recovery from 
perturbations as resilience declines and a critical transition 
approaches 

 

• Can apply to many systems even if the underlying system 
dynamics are poorly understood  
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Rising variance and rising autocorrelation are potentially  
a signal of an approaching shift 

From Wouters et al. 2015 



Rise in temporal variability (SD and autocorrelation)  
prior to regime shift in the North Sea 

From Wouters et al. 2015 



What factors distinguish successful and 
unsuccessful applications of EWS? 

 
 
 
 
 
 
 
 
 

Ø  Review the state of empirical EWS research to date 

Ø  Meta-analysis of published studies  

Ø  Comparative analysis of 8 NE Pacific Ocean time series 

 



Ø  Meta-analysis of published studies 
 

• Searched Web of Science and references cited to identify 
examples of empirical EWS studies 2006 - 2015 

•  Included only non-laboratory examples that presented a 
quantitative test of EWS predictions 

• Categorized system as nonlinear / linear and supporting / 
not supporting EWS theory (ac, variance, skewness) 

• Compared proportion of positive and negative results 
between systems deemed nonlinear and linear 
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Identified 94 EWS studies, 1/3 included empirical test 
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37 EWS tests 
25 systems 
19 studies 

Trophic cascades, desertification, and shifts in species abundance,  
community composition and climate patterns 
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37 EWS tests 
25 systems 
19 studies 

Nonlinearity was demonstrated in only six of the 25 systems.  
These systems produced eight positive EWS tests and no negative tests 
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Underlying driver exhibits 
threshold behavior that is 
tracked by the ecosystem 
response 

Relationship between driver 
and response variable is 
nonlinear 

Relationship between driver 
and response variable is 
different before and after shift 



Ø  Comparative analysis of multiple time series 



Ø  Comparative analysis of multiple time series 

Alaska: 
• Community composition (Pavlof Bay) 
• Community distribution from trawl surveys (EBS) 
• Mean length for juvenile Pacific cod, walleye pollock (EBS) 
 
Northern California Current:  
• Population abundance for three copepods 
• Naturally-produced population of coho salmon 

All respond to climate variability on monthly,  
annual, or decadel time scales  



Ø  Comparative analysis of multiple time series 

•  Test for nonlinearity in biological responses to a climate 
driver between different climate states (linear and 
sigmoidal regressions, GAMs) 

•  Test for rise in EWS, included ad hoc randomization 
approach to conduct valid hypothesis tests for EWS in 
the presence of autocorrelation  

 
i.   Shifts in mean values are preceded by rising EWS 
ii.  Persistent perturbation (i.e. cold anomaly) should be 

accompanied by rising EWS 



Ø  Comparative analysis of multiple time series 

•  Test for nonlinearity in biological responses to a climate 
driver between different climate states (linear and 
sigmoidal regressions, GAMs) 

•  Test for rise in EWS, included ad hoc randomization 
approach to conduct valid hypothesis tests for EWS in 
the presence of autocorrelation  

•  Calculate combined probability of observed EWS 
behavior from multiple EWS tests within and across 
time series with Fisher’s combined probability test  
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Litzow submitted, Litzow et al 2008, 
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• EWS tests for time series showing hysteretic driver-response 
relationships led to rejection of the null hypothesis of no EWS 
behavior prior to shifts (p < 0.00001).  

• EWS tests for for time series with linear driver-response 
relationships failed to reject the null hypothesis (p = 0.67). 

Combined probability across linear and hysteretic groups 



Summary 
• Our analyses demonstrate that nonlinearity in system 

dynamics are more likely to support theoretical EWS 
predictions 

• EWS have been described as ‘generic’, but theoretical 
support for EWS is largely generated from nonlinear models  

 

•  Tests are needed for either nonlinear dynamics or hysteresis 
are needed before employing EWS 
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