Pseudo-nitzschia species and domoic acid in south-eastern Vancouver Island January-July, 2016

Devan Johnson, Nicky Haigh, and Tamara Russell Harmful Algae Monitoring Program, Microthalassia Consultants Inc, Nanaimo, BC, Canada

NRC-IRAP Industrial Research Assistance Program

Overview

- Introduction
 - Where is domoic acid found?
 - Risks of domoic acid in the Strait of Georgia
- Research question
- Methodology
 Identification of species
- Results
- Knowledge gaps
- Acknowledgements

Image: NASAearth Observatory

Introduction

Introduction

November 2015, Saanich Inlet, British Columbia

- Canadian Food Inspection Agency (CFIA)
- 54 μg/g domoic acid (DA) in mussel samples in Saanich Inlet
- First closure due to ASP for the area

SEM and Domoic Acid analysis

- Samples were collected by Harmful Algae Monitoring Program (HAMP)
 - Monitor aquaculture sites for harmful algae
- *Pseudo-nitzschia australis* was dominant species

P. australis was undocumented in the area

 Has been documented in Puget Sound and Strait of Juan de Fuca

Where is domoic acid found in eastern Pacific?

West coast of North America

- Especially in California
- Mostly caused by Pseudo-nitzschia australis in the USA, and by P. pungens/multiseries and P. delicatissima in Canada

Commonly on BC coast around Haida Gwaii and the west side of Vancouver Island

- Few closures
- No reported illnesses recently some suspect

Pseudo-nitzschia species are cosmopolitan

 Domoic acid has been detected on nearly every continent

Potential risks of DA in the Strait of Georgia

- Health risk to recreational harvesters
 - ASP is a new health hazard
 - Possible non-reporting
 - Health risks from harvesting from closed areas
 - Tourist harvesting might not be aware
 - Ecosystem wide impacts
 - i.e. Resident Killer Whale populations
- Economic consequences to aquaculture companies
 - Closure times depend on depuration rates of different shellfish species
 - Many coastal communities and first nations rely largely on shellfish harvesting (i.e.: clam beds)
 - Over 50% of BC shellfish aquaculture sites are in the Strait of Georgia

First time *Pseudo-nitzschia australis* has been seen in eastern Vancouver Island!

 \bigcirc

Research Question

Will Pseudo-nitzschia australis reoccur in Saanich Inlet and the Strait of Georgia in 2016?

Methodology

Methodology

Sites of collection:

- Goldstream
- Mill Bay
- Cowichan Bay
- Genoa Bay
- Maple Bay
- Crofton

Methodology

Discrete samples and vertical net tow samples

- Discrete samples for cell concentration
- Towed samples for absence/presence of species

Samples collected for:

- Molecular identification
- DA concentration
 - (Not yet done)

Identification with LM

Separated species into 4 groups:

- P. australis-type
- *P. delicatissima*-type
- *P. fraudulenta-*type
- P. pungens-type

Based on:

- Shape
- Length
- Striae density (lines on cells)

Methods of identification using LM

Shape and length

• *P. pungens* and *P. australis* are of similar length with different shapes

P. pungens

P. australis

Methods of identification using LM

Methods of identification using LM

Shape and length

- *P. pungens* and *P. australis* are of similar length with different shapes
- *P. fraudulenta* is shorter rarely longer than 80 μ m with same shape as *P*. australis

P. fraudulenta

Methods of Identification using LM

Shape and length

- *P. pungens* and *P. australis* are of similar length with different shapes
- *P. fraudulenta* is shorter rarely longer than 80 µm with same shape as *P. australis*
- *P. delicatissima*-type group is composed of species under 50 μm

P. australis vs *P. fraudulenta* with light microscopy

P. australis and *P. fraudulenta* can be distinguished using striae density

- Striae are raised bars on cells
- Striae density used to ID *Pseudo-nitzschia* species in SEM
- Can be used in LM at 400X 1000X magnification

Results

Results

- Bi-weekly samples
 - Genoa Bay taken monthly due to distance
- Pseudo-nitzschia is counted as cells/mL of the average of the 1m and 5m discrete samples
- Salinity was taken at 1m
- Temperature was taken at 1m

P. australis

Results - Goldstream

Results – Mill Bay

Results – Cowichan Bay

Results – Genoa Bay

Results – Maple Bay

Results – Crofton

Summary of Results

- *P. australis* was present at all study sites from January July, 2016
- *P. delicatissima*-type was most common *Pseudo-nitzschia* sp. in study area
- No DA was detected by the CFIA during study period in Strait of Georgia

Summary of Results

HAMP samples:

- *P. australis* at several sites on eastern Vancouver Island July – September
- Central Coast site concurrent with DA
 - 24.6 µg/g max CFIA data
 - Possibly P. delicatissima
- DA in west coast of Vancouver Island sites in August
 - 8.2 µg/g Roderick Island max CFIA data
- P. delicatissima in nearby HAMP site
 - >10,000 cells/mL

Conclusion

P. australis was present at least once at every site sampled from January to July, 2016

 Max concentration 20 cells/mL at Genoa Bay -Low

P. australis has been present in several HAMP samples

- All the way to the north of the island
- Moderate concentrations max 160 cells/mL

Pseudo-nitzschia species did not appear to have a relationship with the measured environmental data

The presence of *P. australis* should be monitored

- Because of seemingly sudden appearance
- Due to potential health and fiscal risks

Above (all): *Pseudo-nitzschia australis*

Summary

- *Pseudo-nitzschia australis* was detected in Saanich Inlet in November 2015, causing the first closure due to ASP in the area
- Six month study was conducted to determine if the species would reoccur in Saanich Inlet
- *P. australis* was found at every site at least once
- *P. australis* was found all the way to the northern tip of the island in HAMP samples
- Concentrations were low
- Environmental data did not seem to have a relationship
- CFIA did not detect domoic acid in Georgia Strait during sampling period

Knowledge Gaps

How did *Pseudo-nitzschia australis* get into the Strait of Georgia?

- Carried in by currents from the large bloom last year?
- Carried in by artificial means such as ballast water?
- Cells already present and conditions became right for a bloom?

Will concentrations increase in the future?

- Will *P. australis* be identified at more HAMP sites?
- Will CFIA start detecting domoic acid in Strait of Georgia?

How can the effects on shellfish aquaculture and recreational harvesting be mitigated?

Acknowledgements

- NRC-IRAP National Research Council Youth Project
- PICES 2016

 HAMP – Harmful Algae Monitoring Program and Microthalassia Consultants

MICROTHALASSIA

Thank you!

Questions?

Work et al (1993) - Epidemiology of Domoic Acid Poisoning in Brown Pelicans (*Pelecanus occidentalis*) and Brandt's Cormorants (*Phalacrocorax penicillatus*) in California

Effect of domoic acid on marine animals (above)

Photo: Dan Aryes, Washington Department of Fish and Wildlife