Currents and water mass structure and in and near the Gulf of Anadyr

Seth L. Danielson, UAF Gennady V. Khen, TINRO Phyllis J. Stabeno, NOAA

> PICES 25th Anniversary N. Bering Sea Workshop San Diego, CA 3 Nov. 2016

Guiding Questions

- What are the primary flow pathways in the Northern Bering Sea?
- How important are baroclinic currents in the Gulf of Anadyr?
- Where/when does water mass modification occur?
- How do recent years compare to past decades?

Overview

- Regional circulation
- Northern Bering Sea CTD data – 2000-2012
- Late Summer Water Masses
 - defining, structure, messages
 - advection & mixing
 - new insights?
- Heat wave of 2014-2016

Mean flow pathway (modeled)

1988 August Near-Bottom S & NO₃

[Walsh et al., 1989]

2012 CTD Station Distribution

August 66°N 64°N میں سرچ 62°N 60°N 175°E 161°W 165°W

173°W

179°E

177°W

October

169⁰W

CTD Temporal Distribution

CTD data from: TINRO BASIS BEST/BSIERP ArcticEIS

Data gridded into 0.1° Latitude x 0.2° Longitude bins

2000-2012 August/September CTD data

Late summer water masses: as many as 11 distinct components

August-September MLD

Cold plume in Anadyr Strait a well-known recurrent feature.

SST: 8 August 2012

[NASA Worldview]

Gulf of Anadyr SW-NE Cross-section

Notes:

- Stratification up to Anadyr Strait, then mixed
- Fresh jet near slope
- Near-bottom thermal inversion

Gulf of Anadyr SW-NE Cross-section

Geostrophic Velocity (cm/s)

Animation

Gulf of Anadyr NW-SE Cross-section

Temperature

Salinity

<u>We find</u> Anadyr Water Summer Shelf Water Salty Remnant WW Fresh Remnant WW Laterally Mixed AW

Density (kg m⁻³-1000)

Two baroclinic Jets:

Two pathways toward Anadyr Strait

Geostrophic Velocity (cm/s)

2000-2012 Mean 0-30 db Geopotential Height Anomaly

* Baroclinic transport does not appear to account for more than ~0.1 Sv of the total Anadyr/Bering Strait throughflow

Mooring M8 Temperature

August 2012 - August 2013

Mooring M8 Temperature

Example of heat advected along the seafloor in winter. Event of 9-14 January was associated with a strong (presumably wind-driven) eastward flow.

Influence of Depth & Season

on amount of time for modeled floats to move from SW Gulf of Anadyr (near Cape Navarin) to Bering Strait

Winter (Oct-Apr) 10-day mean modeled near-surface float trajectories based on wind direction

Floats begin at blue dots and travel to red dots. Red dots show the mean position of many repeated float deployments.

Northerly Winds

How do recent years compare to prior decades?

Sea Ice Concentration Anomalies

Σ^{r} P sisb amit-lean-tean

Vational Snow and Ice Data Center, Boulder, CO

January 2015 Sea Ice Anomaly

-0.7 million sq km

8

Total anomaly

[NSIDC]

2015: Four centers of N. Pacific surface heat anomalies

G-ADS: COLA/KES

NCEP/EMC/Global Climate & Weather Modeling Branch

SE Being Sea: Mooring M2 Temperature Anomalies

[[]Stabeno et al., 2012]

M2 record of warm/cool intervals is coherent with other N. Pacific time series....

Coastal Gulf of Alaska Temperature Anomaly 2014-2016 **Heat Wave** 2007-2013 "Cool" Years 2 **Station GAK1** 0

2014-2016 Northern Bering Sea 1900-2016 **Heat Wave** 2007-2013 **Annual SST Anomaly** "Cool" Years 1.5 1926 Record Warm Year in Alaska 2016 data only through September ୃତ Departure from Average 0.5 0 -0.5-1 -1.5 └─ 1900 1920 1980 1940 1960 2000 2012

Satellite-era Bering Sea ice extent record in January

[ERSST.v3b over 60-66N, 175E to 160W]

3 September 2012

-

0°C

15°C

Station of the

3 September 2016

57.0002°. -158

Mooring M8 Temperature

August 2012 - August 2013

Mooring M8 Temperature

Note lack of freezing temperatures near the seafloor in 2015

[NSIDC]

>50

35

-5 -10 -15 -20 -25 -30 -35 -40 -45 <-50 %

August 2016 Sea Ice Anomaly

October 2016 Sea Ice Anomaly

Varional Snow and Ice Data Center, Boulder, CO

Recap

- Excellent CTD coverage across the entire Northern Bering Sea in first decade-plus of 2000 millenium. Great value in combined Russian-US datasets.
- Mean thermohaline fields reflect the important regional drivers: Pacific-Arctic pressure head, Anadyr Current, River Discharges, Winter Freezing
- Individual cross-sections provide insight to the roles of advection and mixing
- Recent thermal conditions appear to be outside the envelope of nearly the entire last century.