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Outlines

2) Impacts of MCP on climate change



Since resistant to decomposition, RDOC accumulate

> 95% of marine OC is DOC ;
> 95% of DOC is RDOC

DOC = CO2 inventory

‘ Microbial
Pump

Refractory DOM
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Evidence from the Proterozoic time
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Evidence in the current ocean

Hansell et al. 2009
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MCP special issues
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MARINE BIOGEOCHEMISTRY

The Invisible Hand Behind

A Vast Carbon Reservoir

A key element of the carbon cycle is the microbial conversion of dissolved
organic carbon into inedible forms. Can it also serve to sequester CO,?
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IS applicable to
terrestrial
environments
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Trends in relative dominance of the BP and
the MCP along environmental gradients
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Why deep ocean DOC can hold in the presence of hungry
microbes ?

* RDOCt _Rcalcitrance of the RDOC
under certain environmental
conditions

* RDOCc _RDOC compounds are
very diverse. There are thousands
of different molecules generated
from the successive microbial
processing of organic matter. Each
individual molecule could be at
extremely low concentration
which is below the microbial
uptake threshold..

Jiaoetal.,, 2014 Biogeoscience
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RDOC t rather than RDOCc
is the majority of
deep-sea RDOC pool
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.. Lechtenfeld et al., 2015)
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An appreciable fraction of bacterial DOM has molecular and structural properties that are
consistent with those of refractory molecules in the ocean, indicating a dominant role for
bacteria in shaping the refractory nature of marine DOM. The rapid production of
chemically complex and persistent molecules from simple biochemicals demonstrates a
positive feedback between primary production and refractory DOM formation. It appears
that carbon sequestration in diverse and structurally complex dissolved molecules that
persist in the environment is largely driven by bacteria.
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Ultraviolet - Vis absorption and EEM fluorescence spectra of (a,b)
Synechococcus—derived SPE-DOM, (c, d) Prochlorococcus—derived SPE-DOM,
(e, f) SPE-DOM collected from the Sargasso Sea (BATS at 4,530 m depth)
in August 2013 and (g, h) heterotrophic bacterium R. pomeroyi-derived
SPE-DOM. Note: cell density was different in each culture and preclude
a direct comparison of fluorescence intensity, and hence the given
ultraviolet - Vis and EEM data are only intended to compare peak shapes

(a) Fourier transform ion cyclotron resonance
mass spectrum of Synechococcus SPE-DOM, (b)
van Krevelen diagram of all assigned molecular
formulas of Synechococcus (CB0101) SPE-DOM and
(c) van Krevelen diagrams of the distribution
of CHNO formulas. Note: size of bubbles
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MCP is applicable to
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Biosequestration of carbon by
heterotrophic microorganisms

Ronald Benner

In their correspondence (Microbial produc-
tion of recalcitrant organic matter in global
soils: implications for productivity and
climate policy. Nature Rev. Microbiol. 29 Nov
2010 (doi:10.1038/nrmicro2386-c1))', Liang
and Balser point out similarities between
the microbial production of recalcitrant
non-living organic matter (RNOM) in soils
and in sea water, as presented by Jiao etal.
{Microbial production of recalcitrant dis-
solved organic matter: long-term carbon
storage in the global ocean. Nature Rev.
Microbiol, 8, 593-599 (2010))* in the con-
ceptual framework of the microbial carbon
pump. There is growing evidence indicating
that RNOM derived from microorganisms is
a large, and possibly dominant, global com-
ponent of the non-living reduced carbon in
water, sediments and soils, This realization
has profound implications for our view of
the role of microorganisms in biogeochemi-
cal cycles and the origins and cycling of
RNOM in the environment.

Heterotrophic microorganisms in aguatic
and terrestrial systems have an important
role in organic matter decomposition. In
this role, heterotrophic microorganisms
temineralize carbon and are thereby a major
source of carbon dioxide to the atmosphere,
Bacteria and fungi are noted for their diverse
enzymatic capabilities and their ability to
degrade complex biopolymers, such as
structural polysaccharides and lignins.

These microorganisms are natures ultimate
recyclers, growing and multiplying while
decomposing life’s organic debris. Recent
observations indicate a previously unrec-
ognized functional role for heterotrophic

microorganisms that transcends the classical

role of carbon remineralization and mutrient
regeneration. Microorganisms can grow
rapidly during organic matter decomposi-
tion, and remnants of microbial biomass

are released into the environment through a
variety of processes, including cell division,
lysis by viruses and phages, and protozoan
grazing, These microbial remnants inchude

complex biomolecules with unique structural

components (such as lipopolysaccharides
and hopanoids) that are recalcitrant and can
remain in the environment for extended
periods of time. The organic remnants left
behind often contain melecular fingerprints

documenting their specific microbial origins.

Altered structural forms of hopanoids can
persist as molecular fossils in sediments for
as long as 2,500 million years?, In this way,
heterotrophic microorganisms assume a
previously unrecognized functional rolein
the biosequestration of carbon as RNOM.
The microbial source term for carbon

dioxide production is clearly of much greater

magnitude than the sink term, but the
stabilization of non-living reduced carbon
as RNOM in water*, sediments® and soils®
contributes to the regulation of greenhouse

LINK TO AUTHORS' REPLY 1

gases, influences trace metal and nutrient
availability and improves soil moisture
retention and fertility.

The cycling of RNOM is an enigma that
has baffled biogeochemists for decades.
The vast reservoirs of carbon in RNOM on
land and in the sea exceed the atmospheric
reservoir of carbon dioxide’, so unravelling
the RNOM enigma is a research priority. In
asomewhat ironic twist, the microorgan-
isms that are primarily responsible for the
decomposition and remineralization of
organic matter play an important partin the
biosequestration of carbon and the produc-
tion of RNOM. Future studies are needed to
further explore the microbial carbon purnp
and to identify the microorganisms that
form RNOM in the environment.

Ronald Benner is ot the Department of Biologioa
Siiences and Marine Science Program, University of
South Caroling, Columbia, South Carcling 20208, US4,
e-mail: bennermaibaox scedu
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Microbial production of recalcitrant
organic matter in global soils:
implications for productivity and

climate policy

Chao Liang and Teri C. Balser

In their recent article (Microbial production
of recalcitrant dissolved organic matter:
long-term carbon storage in the global
ocean. Nafure Rev. Microbiol. 8, 593-5%9
(2010)), Jiao ef al.! propose a conceptual
framework — the microbial carbon pump
(MCP) — to address the processes and
mechanisms involved in the generation

of the recalcitrant organic matter that is
stored for millennia in the ocean. The MCP
provides a formalized focus for understand-
ing the role of microbial processes in the
production of recalcitrant organic matter

in marine systems, and it also stresses the
proposition that the part that the ocean
playsin global climate change is largely

driven by microorganisms. This nevertheless

draws attention to microbial production

of recalcitrant organic matter in global ter-
restrial systems, which cover about 30% of
the Earth's surface, as another major global
carbon pool.

Studies of carbon bio-sequestration in
both oceanic and terrestrial systems have
dramatically increased owing to growing
interest in understanding the global carbon
cycle as it pertains to climate change?.
Consequently, much impressiveresearch
has shown microbial carbon stabilization
in oceans**¥, but somewhat less effort
has focused on soils, particularly regard-
ing microbial biomass incorporation into
the soil recalcitrant carbon pool, which
nevertheless lies at the root of two issues of
global concern — maintaining agricultural
productivity and controlling atmospheric
carbon dioxide levels.

Even currently, microbial contributions
to long-lived soil carbon pools are often

regarded as low to negligible, because the
carbon in living microbial biomass is less
than 4% of soil organic carbon ™, However,
microorganisms add to soil carbon ina
continuously iterative process of cell genera-
tion, population growth and death. “The
inability to sum up the effects of a continu-
ally recurrent cause has often retarded the
progress of science” [REF. 9) In recent years
there has been a greater recognition that
microbial necromass may dominate inputs
into those soil organic matter pools that have
longer turnover times'® ™, Thus, in spite of
severe ignorance about this microbial carbon
sequestrationand the lack ofa meaningful
way to measure the magnitude of this very
large pool of dead microorganisms, under-
standing the microbial role in soil carbon
stabilization will undoubtedly advance
the current state of knowledge of global
carbon-cycling models.

The recent novel conceptual model using
Absorbing Markov Chains represents a
first step in attempting to quantify the flow
of carbon through microbial pathways in
terrestrial systems'”. Based on rough data
in an ideal scenario, the model simulation
suggests that the size of the microbial necro-
mass carbon pool could be about 40 times
that of the living microbial biomass carbon
pool in soils, Assuming microbial living

biomass carbon is 2% of the total soil organic

carbon, carbon in the necromass would
account for 80% of the organic carbon in
soil Considering that the model parameters
were generated from divergent sources

under condition-specific studies, an accurate

estimation of the properties and dynamics
of the soil microbial necromass depends on
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additional research. We are eager to provoke
increased discussions and inspire new stud-

ies related to the role of microbial necromass
in soil carbon stabilization.
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A proposal for practice:
Increase Carbon sequestration in the coastal water
by reducing fertilization on the land

. nature
Jiao et al.,, 2010 REVIEWS EIGI0IG




Nutrients can be a double edged sword
Maximum output of the sum of “"BP+MCP” is the goal
to achieve for carbon sequestration

/

tipping point Jiao et al., 2014



Figure 1| NO; concentration as a function of DOC or POC concentration
ameng Earth's major ecosystems. Data were gathere cosystems n

agricultural ac . 5
coastal margir aration of the pattern
ingeoc i s among distinct ocean provinces.

used. Axes are truncated for best observation of data.

*Taylor et al. Nature(2010)
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Marine Environmental
Chamber System

( MECS)

Mini MECS at Shandong University (Qingdao Campus)



MECS for Ecosystem-level Scenario Studies
Such as BP vs MICP at different conditions ...
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Seek optimum combined conditions for
maximum output of the sum of “BP+MCP”

Phytoplankton Bacteria
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BP is very strong

In the current ocean
but was very weak
In the ancient ocean,

MCP was very strong
In ancient time resulting
in accumulation of DOM

DOM reservoir is 100
times largen than the
current one

l.e.,
MCP plays a siginicant
role in climate change

(Ridgwell , 2011)



Shifts in biogenic carbon flow from particulate to dissolved forms
under high carbon dioxide and warm ocean conditions

Kim et al., 2011, Geophysical Research Letters

BP < =)

*Global cooling global warming
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