

Measuring portfolio effects and climate-drivers in the North Pacific using spatio-temporal models and causal statistics

Spatio-temporal model

Benefits of unified approach

- 1. Include biological mechanism
- 2. Improved communication
- 3. Share models and research progress

Causality and statistics

We can define a structural model:

- $E_1, E_2, ..., E_n$ are some unobserved errors
- $V_1, V_2, ..., V_n$ are some unobserved variables
- $D_1, D_2, ..., D_n$ are some observed data

Causality and statistics

How do we estimate this?

Use experiments!

- 1. Fix V_1 at a value experimentally and get data
- 2. Fix V_2 at a value experimentally and get data

Attribution of climate impacts

Thorson, Ianelli, Kotwicki. In press. The relative influence of temperature and size structure on fish distribution shifts: a case study on walleye pollock in the Bering Sea. Fish and Fisheries

Distribution shifts

- Highly variable distribution for semi-pelagic species
 - Dogfish
 - Hake
- Few clear trends
 - Depends on timescale

Thorson, Pinsky, and Ward. 2016. Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods Ecol. Evol. **7**(8): 990–1002.

Vector Autoregressive Spatio-Temporal (VAST) model

(log-density estimates by species)

Vector Autoregressive Spatio-Temporal (VAST) model

Can estimate covariance among species

- Share information among species
- "niche" (spatial) vs. shared environmental response (spatio-temporal) term

Pollock has shifting distribution

 Important fishery in Alaska

Three mechanisms for distribution shift

- 1. Regional or local temperature
- Shifts in size distribution + habitat partitioning
- 3. Unexplained variation

Predicted density given driver Temp. All Size

Procedure

- 1. Fit model with all three mechanisms
- 2. Run counterfactuals that exclude all but one mechanism
- Inspect variance explained

Summary

- Pollock has shifted north over time
- Bottom temperature and size-structure explain little of historical change
 - Explaining distribution shifts requires more than temperature

Hypothesis

 Driven by spatial distribution of fishing

Part 2: Spatio-temporal synchrony

Thorson, Scheuerell, Olden, and Schindler. Spatial heterogeneity contributes more to portfolio effects than species differences in bottom-associated marine fishes.

Synchrony increases aggregate variance Different species

Defining synchrony (ϕ)

$$\phi = \frac{\sigma_{aggregate}^2}{\sigma_{max_possible}^2}$$

where

- $-\sigma_{aggregate}^2$ is the variance over time in aggregate biomass
 - Aggregate across species, locations, or both
- $\sigma^2_{max_possible}$ is the theoretical maximum variance (given variance for each component)
 - Based on perfect correlation among components

Portfolio effects (P)

$$P = 1 - \phi$$

High synchrony → Low portfolio effects

Three types of synchrony

- 1. Species synchrony, $\phi_{species}(s)$
 - Varies among locations s
 - Can average across locations, $ar{\phi}_{species}$
- 2. Spatial synchrony, $\phi_{spatial}(p)$
 - Varies among species c
 - Can average across species, $ar{\phi}_{spatial}$
- 3. Total synchrony, ϕ_{total}

Approach

Measure using 10-year moving windows to detect decadal changes

Species portfolios

- Decreasing
 - Northwest Atlantic
- Increasing
 - Baltic Sea
- Stable
 - Eastern Bering Sea
 - Benguela and Agulas
 Currents (South Africa)
 - North Sea
 - Celtic Sea

Species portfolios

Decrease for Northwest
 Atlantic caused by
 decrease inshore

Species portfolio $P_{species}(s)$ for Northwest Atlantic at each site s

Species portfolios

 Stability for North Sea masks decrease inshore and increase offshore

Spatial portfolio

- Stronger than species portfolios
 - Except weak for Celtic Sea

Total portfolios

- Cannot be weaker than
 Spatial or species portfolio
- Decrease for Eastern Bering
 Sea
 - Started around 2000

Discussion

- 1. Total portfolio effect as "dynamic ecosystem indicator"
 - Indicates change in fishing risk
 - Especially important when spatial portfolio is weak
- 2. Surprisingly stable for most marine ecosystems
 - Monitored systems are intensively managed
- 3. Can use spatio-temporal model to monitor portfolios
 - Automated output in R package VAST for marine fishes

Understanding causal drivers for global oceans

Spatio-temporal toolbox

www.FishStats.org

Public R packages

- 1. FishViz
 - Visualizes results worldwide
- 2. VAST
 - Multi-species index model
- 3. MIST
 - Estimate multispecies interactions
- 4. FishData
 - Scrape data worldwide

Future research

1. Combining data from multiple sources

- If surveys don't overlap spatially
 - Calibration via spatiotemporal correlation
- If surveys do overlap spatially
 - Estimate spatial variation in catchability

Arrowtooth flounder in the North Pacific

Future research

2. Improve access to survey data worldwide

> devtools::install_github("james-thorson/FishData")
Downloading GitHub repo james-thorson/FishData@master
from URL https://api.github.com/repos/james-thorson/FishData/zipball,
Installing FishData

Acknowledgements

NOAA: Jim Ianelli, Stan Kotwicki, Eric Ward, Mark Scheuerell

Danish Technical University: Kasper Kristensen

University of Bergen: Hans Skaug

Univ. Wash.: Julian Olden, Daniel Schindler

Further information

- 1. www.FishStats.org
- 2. www.FishViz.org