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Interdisciplinary, Integrated, Over 90 PIs 



Mean number of days of ice 
cover March –April  

Stabeno et al. 2012, Deep-Sea Research 
II 

 

Warm Years 
 

Cold Years 
 



Stabeno et al., 2017 

Measurements on M2: 
currents, temperature, salinity, 
O2, fluorescence, pCO2, nitrate, 
sound, zooplankton biovolume, 

and  
summer met package 

1995 

2013 

Temperature and Sea Ice 
 at M2 



Eisner et al., 2014 

Cold years increased 
abundance of large 
zooplankton and successive 
warm years reduced 
numbers of zooplankton 
 

Change in abundance of large zooplankton  

Warm 
Years 

Cold Years 



Change in survival of young-of-the-year pollock 
As a consequence, age-0 pollock 
consume richer diets in cold 
years, better preparing them for 
their first winter and enhancing 
survivorship.  

Heintz et al., 2014 

Heintz et al. 2013, DSR II   



Unexpected finding: Young pollock survival better than expected 
during 2014-2016 warm phase (Recruitment Processes Alliance) 

https://www.afsc.noaa.gov/News/BeringSea_warming.htm 

Age – 0 pollock distribution (silver) 



Differences in the 
extent of the cold 
pool and relative 
abundance of 
pollock in warm 
and cold years.  

 

Kotwicki et al. 
2013, Deep-Sea 
Research II  

Warm  
(2005) 

Cold  
(2009) 

Cold pool and its influence on juvenile and 
adult pollock  

Relative Abundance of pollock Bottom Temperature (°C) 



Juvenile and adult spatial shifts 
Pollock distributed differently by size 
and in warm and cold years  
Barbeaux and Hollowed (In Press) 
Fish. Oceanogr. 



 Acclimation and genetic adaptation to reduced pH, de-O2 and 
warming.  
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Type Scenario Parameter Model 

Global Model RCP 
4.5, 8.5 

GFDL-CM, CCSM, 
MIROC 

Regional ocean 
model 

RCP 
4.5, 8.5 

Retrospective performance Bering-10K with NPZ 
with and without 
nutrients as boundary 
condition 

Biological model Variety of 
functional linkages 
to environmental 
change. 

CESM & CEMSM includes 
MCMC resampling of parameter 
uncertainty; Ecosystem models 
explore parameter sensitivity  

CESM, Spatial CESM, 
CEMSM, spatial 
CEMSM, ECOSIM, Size 
Spectral, FEAST 

Socio-economic 
model 

Identify range of 
possible 
management or 
industry 
responses 

Mapping the uncertainty landscape 

CESM – Climate enhanced Single species model; CEMSM – Climate enhanced multi-species 
model; FEAST – Forage Euphausiid Abundance in Space and Time  





Environmental scenarios used to project future change 

Bottom Temperature oC Ensemble RCP 8.5 Bottom temp projections 

2006-2015   2080-2089 

20 + environmental variables stored  
at daily time step 



ACLIM 

10/19/2017 15 

Explicit drivers of population variability (high computational demand) 

Implicit drivers of population variability (random error) 





Fishery Mechanisms Why this might increase Why this might decrease 

Fish prices 
Driven by consumer demand, 
income and/or scarcity 

Driven by fishing and aquaculture 
demand or smaller populations of 
valuable species  

Change in relative price of 
premium fish 

Concentrated wealth 
interacting with scarcity (e.g., 
high prices for halibut) 

Increased value of protein for 
humans or input to aquaculture 

Number of species fished Markets may develop  
Environmental change may lead 
to the decline of some species 

Fishing and processing 
costs 

Increased fuel costs or carbon 
tax. Land or labor costs may 
increase. 

Improved or more selective fishing 
or processing technology 

Priority on conservation 
values or other uses of 
resources 

Change in demand or strength 
of conservation measures 

Change in weak stock policies; 
change in the Endangered 
Species Act 

Increase in protection for 
fishing communities 

Additional concern about 
preserving the distribution of 
fishing opportunities 

Less interest or ability by 
inhabitants to live in remote, 
resource-based areas; more large 
fishing vessels. 

Revenue volatility  
If species are unable to adapt 
to changing climate; global 
economic factors 

Better management or long-term 
investment strategies; global 
economic factors 



Type of Change 

Fish prices 
Change in relative 
price of premium fish 
Number of species 
fished 
Fishing and 
processing costs 
Priority on 
conservation values 
or other uses of 
resources 
Increase in 
protection for fishing 
communities 

Revenue volatility  

Can we simplify this further? 

•Net Trip Revenue 
•Skill in selective 
harvesting  

•Flexibility of fishing 
opportunities 

•Revenue volatility  
 



Management Tools & MSEs 
•Revised harvest control rules 
•New technology  
•Catch shares 
•Dynamic area closures 
•Bycatch changes 
•Price changes 
•Others tools to be invented in the future 
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Conclusions 

• Regional climate change projections have are 
being used to inform management. 

• Scenarios rely on data rich history of bio-
physical process studies. 

• Surprises happened, necessitating continued 
monitoring. 

• ACLIM attempting to address the uncertainty 
landscape using a multi-model approach. 

 
 



Next Steps 

• October Council Meeting / Workshop 
• Continued model integration 
• January Science Workshop 
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