DOAR CONNECTION C.S. DEBARTMENT OF CONNECTION

NOAA FISHERIES

Alaska Fisheries Science Center Bridging the gap between mechanistic understanding and climate projections: an example based on the Bering Sea project

Seattle, WA

Anne Hollowed, Kirstin Holsman, Alan Haynie, Kerim Aydin, Steve Barbeaux, Wei Cheng, Janet Duffy-Anderson, Amanda Faig, Robert Foy, Al Hermann, Jim Ianelli, Stephen Kasperski, Jon Reum Phyllis Stabeno, Cody Szuwalski

Disclaimer:

This is the opinion of the authors and not NOAA, DOC, or the Nation.

Case Study for the Bering Sea

Interdisciplinary, Integrated, Over 90 PIs

Mean number of days of ice cover March – April Stabeno et al. 2012, Deep-Sea Research II

Temperature and Sea Ice

at M2

Measurements on M2: currents, temperature, salinity, O₂, fluorescence, pCO₂, nitrate, sound, zooplankton biovolume, and summer met package

Stabeno et al., 2017

Change in abundance of large zooplankton

Cold years increased abundance of large zooplankton and successive warm years reduced numbers of zooplankton

Eisner et al., 2014

Change in survival of young-of-the-year pollock

As a consequence, age-0 pollock consume richer diets in cold years, better preparing them for their first winter and enhancing survivorship.

Age-1 number (millions)

Heintz et al. 2013, DSR II

Unexpected finding: Young pollock survival better than expected during 2014-2016 warm phase (Recruitment Processes Alliance)

OAA FISHERIES

https://www.afsc.noaa.gov/News/BeringSea_warming.htm

Cold pool and its influence on juvenile and adult pollock

OAA FISHERIES

Differences in the extent of the cold pool and relative abundance of pollock in warm and cold years.

Kotwicki et al. 2013, Deep-Sea Research II

Juvenile and adult spatial shifts

Pollock distributed differently by size and in warm and cold years Barbeaux and Hollowed (In Press) Fish. Oceanogr.

Ecological Modelling 285 (2014) 39-53

Contents lists available at ScienceDirect

Ecological Modelling

journal homepage: www.elsevier.com/locate/ecolmodel

Evaluating the impact of ocean acidification on fishery yields and profits: The example of red king crab in Bristol Bay

MODELLING

André E. Punt^{a,*}, Dusanka Poljak^a, Michael G. Dalton^b, Robert J. Foy^c

^a School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, WA 98195, United States
 ^b Alaska Fisheries Science Center, 7600 Sand Way Point Way, NE, Seattle, WA 98115, United States
 ^c Alaska Fisheries Science Center, Kodiak Laboratory, 301 Research Ct, Kodiak, AK 99615, United States

Red King Crab Juveniles

Extensions to Snow Crab

The ACLIM team

Anne Hollowed

Kirstin Holsman

Alan Haynie

Albert Hermann

Wei Cheng

Andre Punt

Darren Pilcher

Kerim Aydin

Jim Ianelli

Ingrid Spies

Stephen Kasperski Cody Szuwalski

Amanda Faig

Jonathan Reum

Michael Dalton

Paul Spencer

Tom Wilderbuer William Stockhausen

FUNDED BY FATE, SAAM, NPCREP, RTAP

Mapping the uncertainty landscape

Туре	Scenario	Parameter	Model
Global Model	RCP 4.5, 8.5		GFDL-CM, CCSM, MIROC
Regional ocean model	RCP 4.5, 8.5	Retrospective performance	Bering-10K with NPZ with and without nutrients as boundary condition
Biological model	Variety of functional linkages to environmental change.	CESM & CEMSM includes MCMC resampling of parameter uncertainty; Ecosystem models explore parameter sensitivity	CESM, Spatial CESM, CEMSM, spatial CEMSM, ECOSIM, Size Spectral, FEAST
Socio-economic model	Identify range of possible management or industry responses		

CESM – Climate enhanced Single species model; CEMSM – Climate enhanced multi-species model; FEAST – Forage Euphausiid Abundance in Space and Time

Environmental scenarios used to project future change

NOAA FISHERIES

Fishery Mechanisms	Why this might increase	Why this might decrease
Fish prices	Driven by consumer demand, income and/or scarcity	Driven by fishing and aquaculture demand or smaller populations of valuable species
Change in relative price of premium fish	Concentrated wealth interacting with scarcity (e.g., high prices for halibut)	Increased value of protein for humans or input to aquaculture
Number of species fished	Markets may develop	Environmental change may lead to the decline of some species
Fishing and processing costs	Increased fuel costs or carbon tax. Land or labor costs may increase.	Improved or more selective fishing or processing technology
Priority on conservation values or other uses of resources	Change in demand or strength of conservation measures	Change in weak stock policies; change in the Endangered Species Act
Increase in protection for fishing communities	Additional concern about preserving the distribution of fishing opportunities	Less interest or ability by inhabitants to live in remote, resource-based areas; more large fishing vessels.
Revenue volatility	If species are unable to adapt to changing climate; global economic factors	Better management or long-term investment strategies; global economic factors

Type of Change

protection for fishing communities

Revenue volatility

Can we simplify this further?

- •Net Trip Revenue
- •Skill in selective harvesting
- •Flexibility of fishing opportunities
- Revenue volatility

Management Tools & MSEs

- Revised harvest control rules
- New technology
- Catch shares
- •Dynamic area closures
- Bycatch changes
- Price changes
- •Others tools to be invented in the future

Conclusions

- Regional climate change projections have are being used to inform management.
- Scenarios rely on data rich history of biophysical process studies.
- Surprises happened, necessitating continued monitoring.
- ACLIM attempting to address the uncertainty landscape using a multi-model approach.

October Council Meeting / Workshop
Continued model integration
January Science Workshop

Acknowledgements

Thanks to FATE, SAAM, NPCREP, RTAP and all of the Bering Sea Project PIs

Especially

bsierp.nprb.org

BEST-BSIERP Bering Sea Project

Modeling Component Group: Kerim Aydin, Mike Dalton, Georgina Gibson, Alan Haynie, Kirstin Holsman, Al Hermann, Jim Ianelli, Liz Moffitt, Franz Mueter, Andre Punt, Muyin Wang, Ivonne Ortiz,

