

On the nature of wind-forced upwelling in Barrow Canyon

Maria N. Pisareva, mnpisareva@gmail.com, IO RAS, Moscow

Robert S. Pickart, Paula S. Fratantoni, Thomas J. Weingartner

28 Sept 2017, PICES, Vladivostok

Pacific-origin waters influence the interior Arctic

Seasonal T/S diagrams for the water measured by the mooring

Bering Sea Water: > 0 °C; 32.2 – 33 (12.2%) Alaskan Coastal Water: >3 °C; <32 (3.2%) Atlantic Water: >-1.26 °C; > 33.64 (5%)

Winter Water: <-1.6 °C; <34 (38%) Remnant Winter Water: -1.6<T<0 °C (29.8%) Hypersaline Water: <-1.6 °C; >34 (10.4%)

Bering Sea Water: > 0 °C; 32.2 – 33 (12.2%) Alaskan Coastal Water: >3 °C; <32 (3.2%) Atlantic Water: >-1.26 °C; > 33.64 (5%) Winter Water: <-1.6 °C; <34 (38%) Remnant Winter Water: -1.6<T<0 °C (29.8%) Hypersaline Water: <-1.6 °C; >34 (10.4%) 25 wind-driven upwelling events were identified in 2002/04 at the head of Barrow canyon from the near-bottom SBI mooring data

Upwelling criteria:

- positive potential density anomaly
- up-canyon flow
- northerly winds

Characteristics of defined upwelling events:

- V mean =~35 cm/s, V max = 120 cm/s;
- Av. Length = 59 h (from 23h to 135h)
- 2002/03: 11 events; 2003/04: 14 events;
- Sep Nov: 13; Dec Feb: 6; Mar May: 4; Jun Aug: 2;
- Wind-current time lag 7h (compare to 8h at the shelfbreak [e.g. Schulze and Pickart, 2012])
- Current-density anomaly lag 21h (10h at the shelfbreak)

During warm season – <u>Winter Water</u>; <u>Atlantic Water</u> – only during cold season.

Upwelling integral index

Ice concentration at the mooring site and within the polynya region

AVHRR-AMSR data

<10 % : 12 events 10 – 70 % : 11 events >70 % : 2 events

UI

Strength of forcing versus water column response

Pt Barrow weather station data

Time integral of the windstress at Pt. Barrow for the up-canyon wind events

$$Iw = \int_{t_s}^{t_e} \tau_a(t) dt,$$

For the up-canyon wind events with $I_w > 2 \text{ N m}^{-2} \text{ d}$ 70% of the events resulted in upwelling => ~184 upwelling events at the head of Barrow Canyon over the 34-year period

Pt Barrow weather station data

Summary

- 25 wind-driven upwelling events identified in 2002-04 at the head of Barrow Canyon
- greatest number of events occurred in fall
- AW was upwelled to the mooring site only during the "cold" season (Oct-Mar); in the "warm" season (Apr-Sep) all of the events consisted only of winter water modes
- almost all of the pronounced sudden decreases in ice concentration coincided with an upwelling event (strongest events linked to the largest ice openings)
- in the cold months primarily a deepening of the Aleutian Low drives the upwelling
- no statistical correlation between the strength of the wind forcing and the magnitude of the upwelling was found, but...
- ice and wind records could be used for assessing upwelling events at the head of Barrow Canyon in the past and future

Thanks!

Pisareva M.N., R.S. Pickart, P.S. Fratantoni, T.J. Weingartner. On the nature of wind-forced upwelling events in Barrow Canyon. DSR I, DBO special issue, submitted.

HEALY

2