SPATIAL AND TEMPORAL VARIABILITY OF COCCOLITHOPHORE BLOOMS IN THE EASTERN BERING SEA

Carol <u>Ladd</u>, Lisa Eisner, Sigrid Salo, Calvin Mordy, and Debora Iglesias-Rodriguez

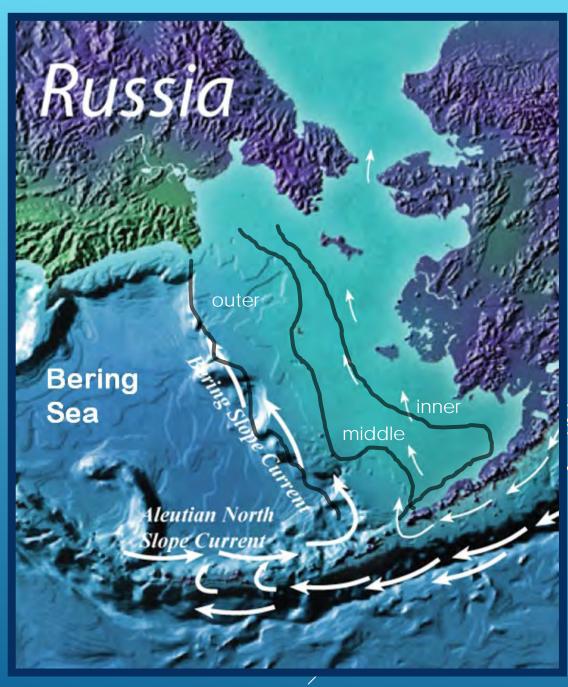
- Small (3-10 µm) phytoplankton cells with exoskeleton plates of calcium carbonate
- Blooms thought to develop in stratified, nutrient depleted surface waters
- Blooms may affect visual predators (fish, seabirds)
- Blooms may promote a less productive & longer food web
- Coccolithophore CaCO3 precipitation contributes to carbon sequestration on planetary scales (Westbroek et al., 1993)

- Small (3-10 µm) phytoplankton cells with exoskeleton plates of calcium carbonate
- Blooms thought to develop in stratified, nutrient depleted surface waters
- Blooms may affect visual predators (fish, seabirds)
- Blooms may promote a less productive & longer food web
- Coccolithophore CaCO3 precipitation contributes to carbon sequestration on planetary scales (Westbroek et al., 1993)

- Small (3-10 µm) phytoplankton cells with exoskeleton plates of calcium carbonate
- Blooms thought to develop in stratified, nutrient depleted surface waters
- Blooms may affect visual predators (fish, seabirds)
- Blooms may promote a less productive & longer food web
- Coccolithophore CaCO3 precipitation contributes to carbon sequestration on planetary scales (Westbroek et al., 1993)

- Small (3-10 µm) phytoplankton cells with exoskeleton plates of calcium carbonate
- Blooms thought to develop in stratified, nutrient depleted surface waters
- Blooms may affect visual predators (fish, seabirds)
- Blooms may promote a less productive & longer food web
- Coccolithophore CaCO3 precipitation contributes to carbon sequestration on planetary scales (Westbroek et al., 1993)

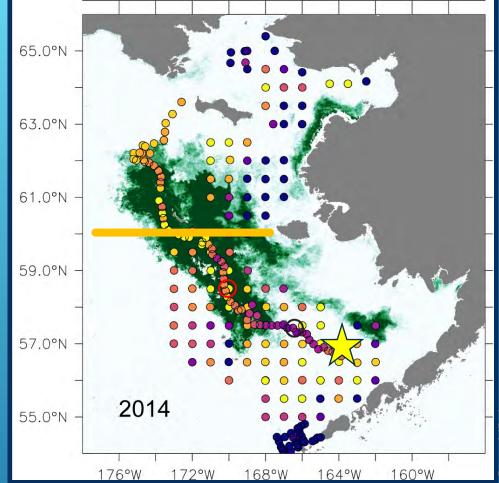
- Small (3-10 µm) phytoplankton cells with exoskeleton plates of calcium carbonate
- Blooms thought to develop in stratified, nutrient depleted surface waters
- Blooms may affect visual predators (fish, seabirds)
- Blooms may promote a less productive & longer food web
- Coccolithophore CaCO3 precipitation contributes to carbon sequestration on planetary scales (Westbroek et al., 1993)


BERING SEA

> Wide shelf (>500 km)

 3 shelf domains (inner, middle shelf, and outer shelf)

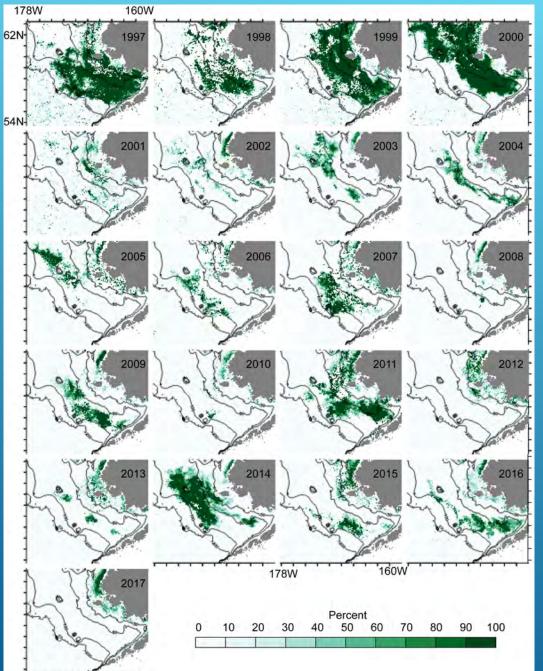
Marginal Ice zone


Sea ice, temperature, stratification important to ecosystem

DATA

- Coccolithophore Bloom Index
 - SeaWiFS 1998-2001
 - MODIS 2002-present
- Stratification Index

Moored temperature data (M2): Mixed Layer Temp – Deep Temp


Cruise Data (August/September 2009, 2011, 2014)

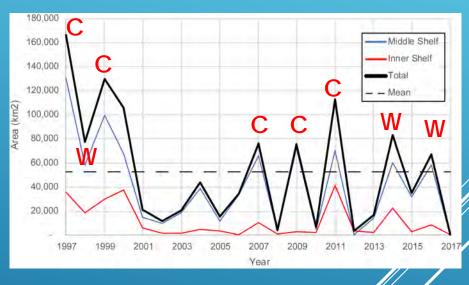
Gridded Survey


70m isobath transect

COCCOLITHOPHORE BLOOM INDEX (CBI)

- Methodology developed by lida et al. (2012; 2002) to identify satellite ocean color pixels associated with coccolithophores
 - SeaWiFS 1998-2001
 - MODIS 2002-present
- Estimated average area (km²) covered by coccolithophore blooms during September each year
- Two indices calculated: one for the middle shelf and one for the inner shelf south of 60°N
 - middle shelf (50 100m depth)
 - inner shelf (30 50m depth)

COCCOLITHOPHORE BLOOM INDEX (CBI)

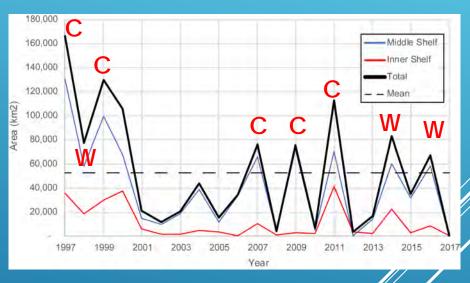


(Ladd et al., 2017) Alaska Marine Ecosystem Considerations http://access.afsc.noaa.gov/reem/ecoweb/Index.php

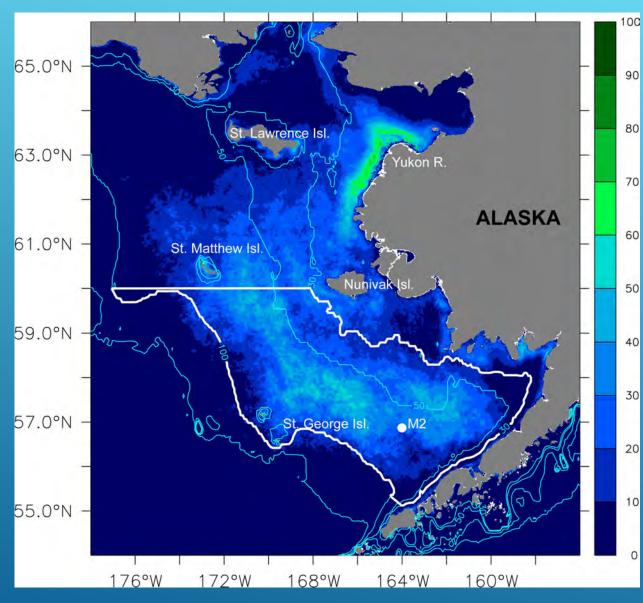
Year	Satellite	Middle Shelf	Inner Shelf	Total	
1007 (0)	SeaWiFS			4// 500	
1997 (C)	SeaWiFS	130,391	36,141	166,532	
1998 (W)		58,776	18,983	77,759	
1999 (C)	SeaWiFS	99,791	30,344	130,134	
	SeaWiFS	,,,,,			Table 1.
2000 (A)	SeaWiFS	68,306	37,566	105,873	CBI: Ar
2001 (W)		14,835	6,209	21,044	covered
2002 (W)	MODIS	10,132	1,897	12,029	bloom in
	MODIS				
2003 (W)	MODIS	18,815	1,611	20,426	Septemb
2004 (W)	MODIS	39,163	4,914	44,077	
2005 (W)	WODIS	12,162	3,792	15,954	
2006 (A)	MODIS	34,191	373	34,564	W/C/A
	MODIS	54,171	575	51,001	designat
2007 (C)	MODIS	66,101	10,326	76,427	of each
2008 (C)	WODIS	3,579	862	4,441	
2009 (C)	MODIS	70 57(2 0 7 0	75,855	year refe
	MODIS	72,576	3,279	75,055	to warm
2010 (C)	MODIS	4,608	2,109	6,717	cold, or
2011 (C)	WODIS	70,772	41,802	112,574	average
2012 (C)	MODIS	070	2 / 5 /	3,930	conditio
	MODIS	273	3,656	3,930	
2013 (C)	MODIS	14,637	2,429	17,066	
2014 (W)	100013	60,658	22,268	82,927	Dia
201E (M)	MODIS				Bloom
2015 (W)	MODIS	32,302	2,893	35,195	
2016 (W)		58,797	8,767	67,563	
2017 (A)	MODIS	9	431	440	
Mean		41,470	11,460	52,930	
Standard Deviation		35,753	13,774	47,332	

CBI: Area covered by bloom in September W/C/A designation of each vear refers to warm, cold, or average conditions

COCCOLITHOPHORE **BLOOM INDEX (CBI)**

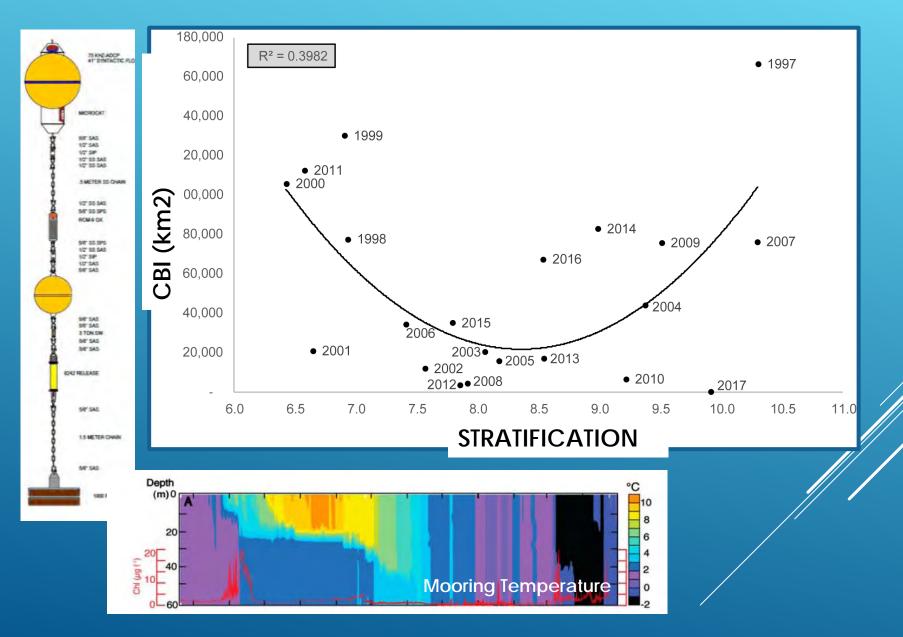

(Ladd et al., 2017)

Alaska Marine Ecosystem Considerations http://access.afsc.noaa.gov/reem/ecoweb/Index.php


Year	Satellite	Middle Shelf	Inner Shelf	Total	
1007 (0)	SeaWiFS			4// 500	
<u>1997 (C)</u>	SeaWiFS	130,391	36,141	166,532	
1998 (W)		58,776	18,983	77,759	
1999 (C)	SeaWiFS	99,791	30,344	130,134	
	SeaWiFS	,,,,,	30,344		Table 1.
2000 (A)	SeaWiFS	68,306	37,566	105,873	CBI: Ar
2001 (W)		14,835	6,209	21,044	covered
2002 (W)	MODIS	10,132	1,897	12,029	bloom in
	MODIS	10,102	1,077	12/02/	
2003 (W)	MODIS	18,815	1,611	20,426	Septemb
2004 (W)		39,163	4,914	44,077	
2005 (W)	MODIS	12,162	3,792	15,954	
	MODIS				W/C/A
2006 (A)	MODIS	34,191	373	34,564	designat
2007 (C)		66,101	10,326	76,427	U
2008 (C)	MODIS	3,579	862	4,441	of each
2000 (0)	MODIS	3,579	802	4,441	year refe
2009 (C)		72,576	3,279	75,855	to warm
2010 (C)	MODIS	4,608	2,109	6,717	cold, or
	MODIS				
2011 (C)	MODIS	70,772	41,802	112,574	average
2012 (C)		273	3,656	3,930	conditio
2013 (C)	MODIS	14 4 2 7	2 420	17,066	
2013 (0)	MODIS	14,637	2,429	17,000	
2014 (W)	MODIC	60,658	22,268	82,927	Bloom
2015 (W)	MODIS	32,302	2,893	35,195	
	MODIS	02,002	2,373		
2016 (W)	MODIS	58,797	8,767	67,563	
2017 (A)	MODIS	9	431	440	
Mean		41,470	11,460	52,930	
Standard Deviation		35,753	13,774	47,332	

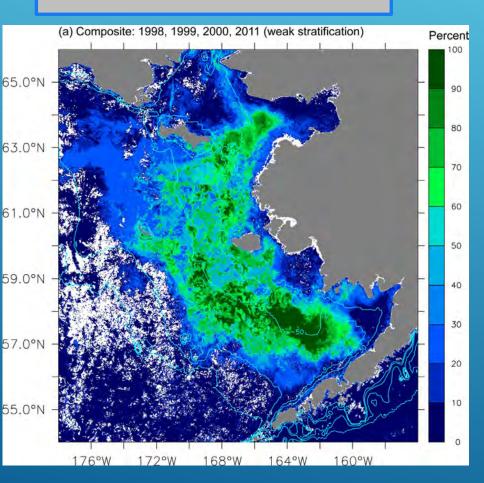
CBI: Area covered by bloom in September W/C/A designation of each vear refers to warm, cold, or average conditions

COCCOLITHOPHORE **BLOOM INDEX (CBI)**

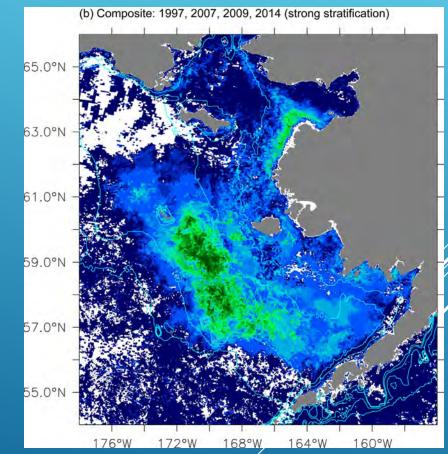


Bloom Years NOT associated with warm/cold (or ice extent)

COMPOSITE CBI (1997 – 2016) 22% Inner Shelf 78% Middle Shelf


CBI VS STRATIFICATION

STRATIFICATION AFFECTS LOCATION OF BLOOM


Weak stratification years

more bloom on inner shelf

Strong stratification years

\Rightarrow more bloom on middle shelf

SEPTEMBER 2014

Septémber 2014 Cruise

Coccolithophore bloom from 29 September 2014 satellite image. Ship's sampling stations (white circles) from NOAA's R/V Oscar Dyson. [image: S. Bell]

STORAGE TEXTS

STOLES STOLES

TD121CTE120

CILDE2

CTOQUE STEQUE STEQUE STEQUE STEQUE STEQUE STEQUE STEQUE

9/23/2014 11:59 pm

CTB(1)7

CIDING COTOS QUDINS

CTD113 CTD2 CTD011

CTO 110 O

CTD 100CTD108

СТДО99 СОД98

QTD097

Q_{TD093}

CTO OT COLORIDO COLORIDO

CTD094

G10092

© 2014 Google US Dept of State Geographer Image Landsat DataISIO, NOAA, U.S. Navy, NGA, GEBCO

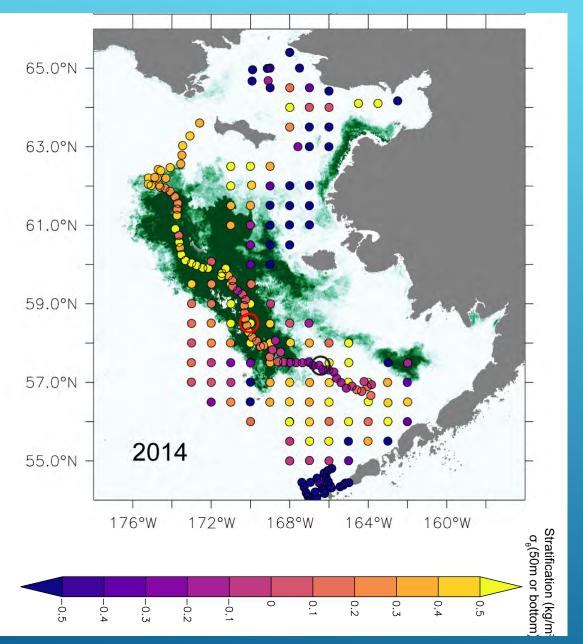
CHOUSE CHOUSE

CTD088 CTD086 CTD085

Imagery Date: 4/10/2013 58°36'00.06" N 166°54'03.91" W G

CTD078 CTD177

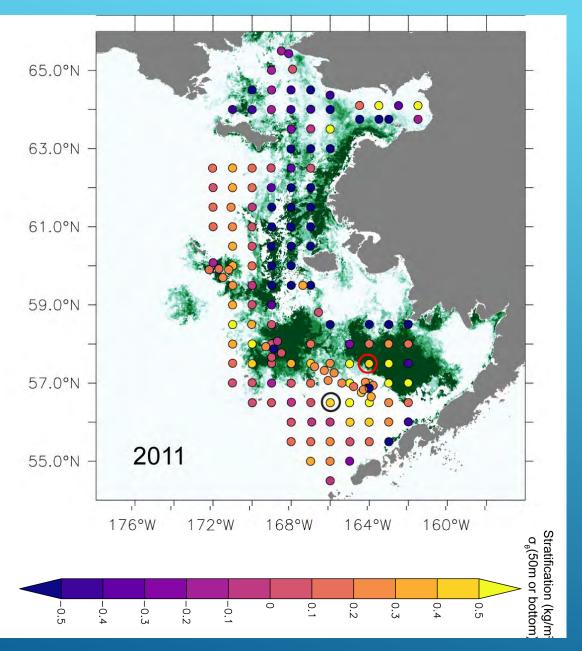
CHEO0/4 CHEO/3


GTD075

CTD07

C D070

2050

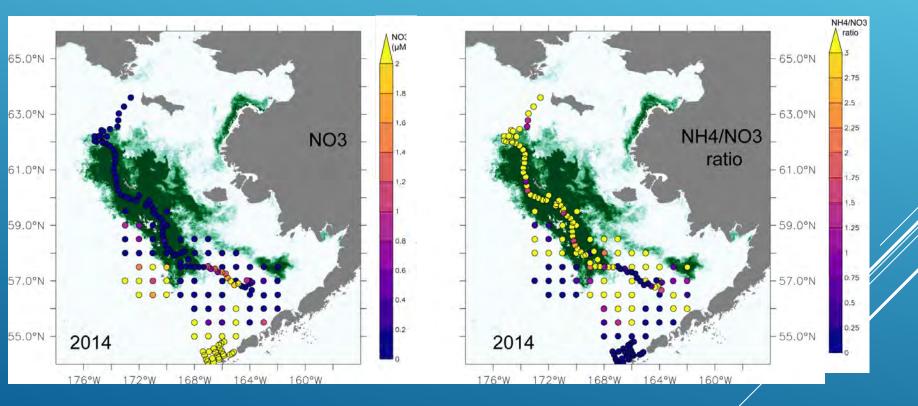

CTDC76

2014 SEPTEMBER CRUISE DATA

2014: relatively strong stratification

Bloom (middle shelf)is coincident with> Stronger stratification

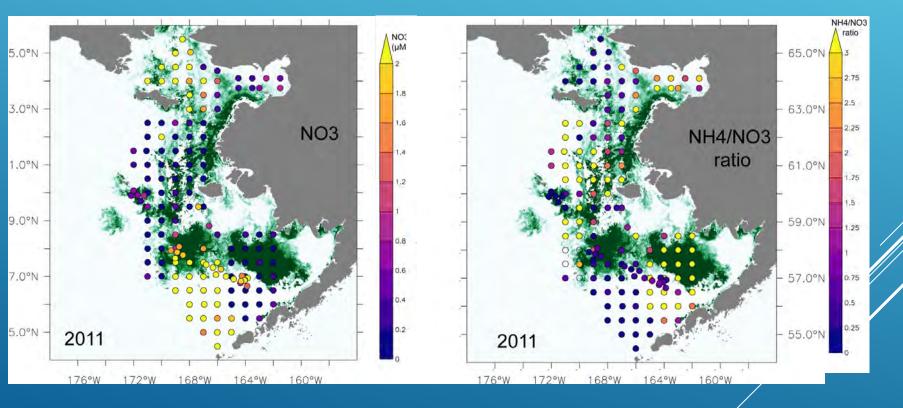
2011 SEPTEMBER CRUISE DATA

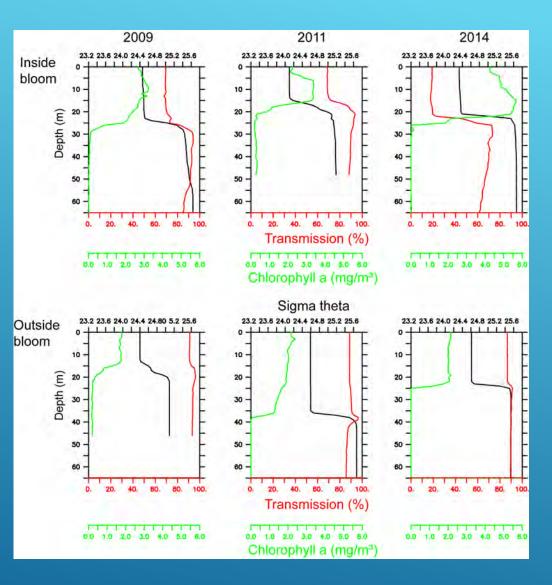

2011: weak stratification

Bloom (inner shelf)is coincident with> Weaker stratification

Bloom (middle shelf) is coincident with > Lower NO3/higher NH4

2014 SEPTEMBER CRUISE DATA


2014: relatively strong stratification



Bloom (inner shelf) is coincident with > Lower NO3/higher NH4

2011 SEPTEMBER CRUISE DATA

2011: weak stratification

2009, 2011, 2014 **CRUISE DATA Inside bloom:** > High Chl a above pycnocline > Low light transmission above pycnocline **Outside bloom:** > High light transmission throughout water column

CONCLUSIONS

- Coccolithophore Bloom Index (CBI) has been developed for monitoring and reporting to Ecosystem Managers
- High interannual variability (not associated with temperature regime)
- Blooms typically occur over middle shelf of Bering Sea
- Location of bloom associated with stratification: Low stratification resulted in spatial shift of bloom toward shallower inner shelf water
- Blooms associated with both very high and very low stratification
- Spatial correspondence between areal extent of bloom and
 - Low nitrate/high ammonium concentrations