Observing Canada's Pacific Coastal Ocean:

Networks, programs and pathways to operationalization

S. Kim Juniper¹, Akash Sastri¹, Charles Hannah², Jennifer Jackson³ and Bryan Hunt³

- ¹ Ocean Networks Canada, University of Victoria, Victoria, BC, Canada. E-mail: kjuniper@uvic.ca
- ² Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC V8L 4B2, Canada
- ³ Hakai Institute, PO Box 309, Heriot Bay, BC VOP 1H0, Canada

Operational Observing in Coastal Oceans

Sectors Served

(sample from Journal of Operational Oceanography)

- Numerical Weather Prediction
- Safe and Efficient Marine Operations
- Ocean and Climate Forecasting
- Eutrophication
- Coastal Flooding
- Reducing Public Health Risks
- Protecting and Restoring Ecosystem Health
- Controlling and Mitigating Natural Hazards

Required frequency of observations

High-frequency, real-time ——————— Occasional surveys

Conclusion

- Observing system components = many, varied
- Coverage = reasonable in many areas
- Functional integration = few success stories

Regional scale observing system components

Functional regional scale observing system

Observing Canada's Pacific Coastal Ocean:

Networks, programs and pathways to operationalizationan unfinished journey

S. Kim Juniper¹, Akash Sastri¹, Charles Hannah², Jennifer Jackson³ and Bryan Hunt³

³ Hakai Institute, PO Box 309, Heriot Bay, BC VOP 1H0, Canada

¹ Ocean Networks Canada, University of Victoria, Victoria, BC, Canada. E-mail: kjuniper@uvic.ca

² Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC V8L 4B2, Canada

Canada's Pacific Coast Regions

Salish Sea

Northern Shelf

West Coast Vancouver Island

Fjords & Coastal Inlets

Coastal Ocean Monitoring Programs and Infrastructure

Fixed monitoring systems

- Permanent tide gauge network
- Weather buoys
- DFO moorings
- Lighthouse program
- Ocean Networks Canada cabled observatories
- Hakai Institute observing systems

Vessel-based monitoring

- DFO monitoring cruises
- Hakai boat-based monitoring
- Pacific Salmon Foundation 'Community Fishers'
- BC ferries
- Alaskan ferry

Fixed Monitoring Systems

Tide Gauge Network

Weather Buoys

DFO Moorings

BC Lighthouse program

- daily temperature & salinity (bucket sample at high tide)

Ocean Networks Canada real-time cabled observing platforms

Ocean Networks Canada real-time cabled observing platforms

Hakai Institute observing systems

Cabled system on Quadra Island

- underwater and shore-based sensors

THET

Vessel-Based Monitoring

DFO Surveys and Monitoring Cruises

Hakai boat-based observing programs

- Central Coast
- Johnstone Strait
- Northern Salish Sea

Community Fishers - Pacific Salmon Foundation

BC Ferries - ONC

- Ferries transit through
 Fraser River plume
- Strong CDOM and salinity gradient

Alaska State Ferry – Hakai

Contribution of current observing systems and programs to operational observing needs for Canada's Coastal Pacific

Operational Need	Status	Required observational time scale
Marine geohazard mitigationEarthquake early warningTsunami detectionStorm surge	→ ● → ● → ●	Real-time, data assimilation by models Real-time, data assimilation by models Real-time, data assimilation by models
Maritime Safety - Sea state		Real-time or near-real time
Aquaculture & Public Health	\longrightarrow	Daily to monthly
Marine ConservationMPA & ecosystem healthWhale protection	• → •	Annual to longer Real-time to longer
Monitoring regional scale oceanographic processes	•	Hourly to seasonal

Geohazard Mitigation

- Earthquake early warning

Geohazard Mitigation

- Tsunami detection

Geohazard Mitigation - Storm surge

SalishSeaCast NEMO Model (Susan Allen, UBC)

Maritime Safety – Sea State

General Marine Wind and Wave Forecasts

- Based on terrestrial observations and data from buoys
- Higher spatial and temporal resolution needed for some operational requirements
 - BC Ferries sailing decisions
 - Search and rescue
 - Oil spill response

Maritime Safety – HF Radar

Several systems operating or planned, but no operational uptake

Aquaculture and Public Health

HAB monitoring in the field

- Some localized sampling & monitoring by industry
- Research projects but no regional monitoring program
- Seasonal area closures

Marine Conservation - MPA & Ocean Health Monitoring

Ocean Health compilations

MPA surveys but no monitoring programs

Marine Conservation

- Whale protection

Monitoring capacity in place in critical areas

- AIS vessel traffic
- Hydrophone network

No operational use or integration...yet

Monitoring Regional Scale Oceanographic Processes - warm blob comes to the coast

- Saanich Inlet (95m depth)

Data Access Challenge

Multiple operators, multiple monitoring systems, multiple databases

Fixed monitoring stations

- Permanent tide gauge network
- Weather buoys
- DFO moorings
- Lighthouse program
- Ocean Networks Canada cabled observatories
- Hakai Institute observing systems

Vessel-based monitoring

- DFO monitoring cruises
- Hakai boat-based monitoring
- Pacific Salmon Foundation 'Community Fishers'
- BC ferries
- Alaskan ferry

Data Access

Observing System

CANADIAN INTEGRATED OCEAN OBSERVING SYSTEM

DEADLINE: June 7, 2018 at 4PM Atlantic, Submit is a PDF to Move Revident All represented applicants must commit Alexa Revidenan before submitting the

3 Initial Regional Organizations

- Pacific CIOOS
- St. Lawrence CIOOS
- Atlantic CIOOS

NAVIGATION Back to Funding

Canadian Integrated Ocean Observing System

Challenge – sorting through data archives

Historic

Currently Active

West Coast Vancouver Island

Conclusion

- Observing system components = many, varied
- Coverage = reasonable in many areas
- Functional integration = few success stories

Barriers to implementation

Regional scale observing system components

- Data access
- Societal need
- Development of a community of practice
- Appropriate scale questions
- Resources for sustained & comprehensive use of all data

Functional regional scale observing system

Grest Bear Reinferest, partiel & cenn on cennas | By: Karen Hamilton, Victoria, British Columbia, Canada | @Shartist

PICES SUMMER SCHOOL 2018 Coastal Ocean Observatory Science

Learn about ocean sensors, data QA/QC, time-series analysis and Ocean Networks Canada's observing technology, through field expeditions, laboratory demonstrations and lectures. Financial support available.

JULY 9-13, 2018 VICTORIA, BRITISH COLUMBIA, CANADA

THANK YOU!

Ocean Networks Canada is funded by the Canada Foundation for Innovation, Government of Canada, University of Victoria, Government of British Columbia, CANARIE, and IBM Canada.

