

Assessing the Severe Eutrophication Status and Spatial Trend in the Coastal Waters of Zhejiang Province (China)

Ocean College, Zhejiang University. 21534002@zju.edu.cn

Oct.30, PICES 2018 Annual Meeting, Yokohama

CONTENTS

Part 01

Background

Methods

Part 02

Study Area

Results

01 Background Marine pollution

- Increasing anthropogenic activities (Shipping, Agriculture, Heavy industry...)
- Nutrient loading (Nitrogen, Phosphorous)
- Declining water quality, Harmful algal blooms, Hypoxia...

01 Background

Sea water quality of China

02 Study Area

Zhejiang coastal waters

- □ 44.4 thousand km²
- Along East China Sea
- Large amounts of anthropogenic nutrients flow into sea water from Yangtze River and Qiangtang River
- A total of 321 samples were collected during August 2015 with monitoring attributes such as pH, chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN, the sum value of NO₂-N, NO₃-N, NH₃-N) and dissolved inorganic phosphorous (DIP)

03 Methods

Bayesian Maximum Entropy

Integrate informative content from different sources

- Independent of the data distribution (e.g., nonlinear interpolators, non-Gaussian distributions)
- Improved Space/Space-Time prediction accuracy (vs Kriging, IDW)

He, J., & Kolovos, A. (2017). Bayesian maximum entropy approach and its applications: a review. *Stochastic Environmental Research & Risk Assessment*(6), 1-19.

03 Methods

Time

Stochastic Site Indictor

Extent of eutrophication Space-time distribution pattern Quantitatively characterization Identification of eutrophication risk & critical region Conditional MEP (CMEP) $P_{mp}^{\Theta}(\zeta)$ $= \overline{MP(s)|MP(s) \ge \zeta}$ The binary marine pollution Polluted indicator dispersion $\Psi_{mp} = \frac{L_{mp}^{D}(\zeta)}{\overline{}}$ (PID) (e.g., eutrophication) characteristic Θ 1 1 Marine pollution 0 0 0 1₁1

0

0

n

04 Results

Water quality maps

The COD, DIN, and DIP concentration maps generated by the IDW, OK, and BME methods

- BME has the best cross-validation performance.
- Spatial maps show a global decreasing trend from the coastal estuary to the open sea.
- Extremely high values were found in Hangzhou Bay-where there are much human disturbances and pollutant accumulations from the upstream freshwater.

04 Results

Characterization & Assessment

By calculating the RAEC differences for the thresholds 1, 3,and 9 of the Eutrophication index classification standards, it is found that in 25.95% of the Zhejiang coastal waters the quality grade is oligotrophic, in 19.18% mesotrophic, in 20.53 eutrophic, and in 34.34% hypereutrophic.

At distances smaller than a critical distance 15 km, the eutrophication locations are concentrated in the coastal waters of the Zhejiang province rather than being dispersed

20

El threshold S

Main Reference

LIMNOLOGY AND OCEANOGRAPHY

Jiang, Q., He, J., Wu, J., Hu, X., **Ye, G., & Christakos, G**. (2018). Assessing the severe eutrophication status and spatial trend in the coastal waters of zhejiang province (china). *Limnology & Oceanography*.

Christakos, G. 2000. Modern spatiotemporal geostatistics. Oxford Univ. Press.

Christakos, G., and D. T. Hristopulos. 1996. Stochastic indicators for waste site characterization. Water Resour. Res. 32: 2563–2578.

He, J., & Kolovos, A. (2017). Bayesian maximum entropy approach and its applications: a review. *Stochastic Environmental Research & Risk Assessment*(6), 1-19.

Thanks

FOR YOUR ATTENTION

Oct. 25 ~ Nov. 4, PICES 2018 Annual Meeting, Yokohama, Japan

