Effects of Ocean Acidification on Primary Producers

Kunshan GAO

State Key Laboratory of Marine Environmental Science (Xiamen University)

"Ocean Acidification" *Nature* **(2003)**

Hawaii Ocean Time Series http://hahana.soest.hawaii.edu/hot/

Ocean acidification alters carbonate chemistry

Gattuso et al. 2015 *Science*

Marine Photosynthesis accounts for about

50%

 Marine Photosynthesis drives oceanic biological CO2 pump that takes up (per hr) over 100 million tons of fossil fuel CO₂

Gattuso JP et al. 2015. *Science*

About 1272 papers on responses of marine photosynthetic organisms to OA till Jul. 1, 2018 (OA-ICC bibliographic database)

Nature 1997, Science 2008 PNAS 2016…….

*Nature 2000, 2011***;** *Nat Clim Change 2012 Science 2017……..*

Stimulating Neutral Inhibitive

Growth/Photosynthesis/Respiration/Calcification/N2 fixation

$\Omega = [\mathbf{CO}_3^2]_{\mathrm{MEAS}} / [\mathbf{CO}_3^2]_{\mathrm{CAL}}$

Effects of ocean acidification?

CO2 rise and acidic stress: double edged?

FOCE: Free Ocean CO2 Enrichment Exp.

Responses

1. Photosynthesis / Growth

- **2. Metabolic Pathways**
- **3. Calcification (calcifying algae)**
- **4. Combined impacts with other stressors**

Supplementary Table 2. Locations of the stations, cruise information, sea surface temperature (SST, °C) and pH_T, NO₃+NO₂ (N, µmol L⁻¹) and PO₄³- (P, µmol L⁻¹), solar PAR (mean, umol photons $m^2 s^{-1}$) during ¹⁴C-traced incubations, incubation time (h), surface seawater chlorophyll a concentration (Chl a, μ g L⁻¹), chlorophyll a concentration (µg $L⁻¹$) of phytoplankton assemblages grown for 6-7 days under low CO₂ (LC,385 µatm) and high CO₂ (HC, 800 µatm for all stations except SEATS and C3, where 1000 μ atm CO₂ was applied), and the primary productivity (PP, triplicate incubations, μ g C L⁻¹h⁻¹) by the phytoplankton assemblages grown in the low CO₂ microcosms at the end (day 7) of the growth-out in the microcosms. BLQ stands for "below the limit of quantification". The concentrations of the nutrients were determined by the chemistry group of Xiamen Univ. during the cruises. Chlorophyll a concentration in the microcosms at station PN07 was not measured (nd).

Station	Location	Season*	SST	pH_T	N	P	Solar PAR	Incubation time(h)	Chl a	Chl a (LC)	Chl a (HC)	\overline{PP}
LE04	(18.0°N, $113.0^{\circ}E$	Summer	29.5	8.03	BLQ	0.014	1681	6	0.05	0.15	-91 - 91 - 0.13	0.10 ± 0.08
PN07	$(30.0^{\circ}N,$ $124.5^{\circ}E$	Summer	29.6	8.03	BLQ	0.019	1371	$\boldsymbol{6}$	0.71	$\rm Nd$	nd	0.18 ± 0.12
A4	(20.8°N, $115.2^{\circ}E$)	Autumn	25.5	8.04	BLQ	0.156	794	6	0.44	1.08	0.69	2.73 ± 0.32
E606	(18.9°N, $114.1^{\circ}E$	Autumn	25.3	8.06	BLQ	BLQ	821	6	0.34	0.82	0.20	4.74 ± 0.10
SEATS	(18.0°N, 116.0 °E)	Spring	28.7	8.04	BLQ	0.037	1251	12(24)	0.10	0.49	0.59	2.08 ± 0.14 $(19.80 \pm 1.09)^{**}$
C ₃	(20.6°N, $114.2^{\circ}E$)	Spring	28.5	8.03	BLQ	0.032	1027	12(24)	0.21	0.42	0.36	1.83 ± 0.06 $(16.28 \pm 0.73)^{**}$

Gao et al. 2012 *Nature Climate Change (Supplementary data)*

HCO₃ **PO.** CA **Calvin** cycle $HCO₃$ CO₂ **CCMs** intracellular dissolved inorganic carbon concentration up to 1000 times that of milieu

> Acidic stress + photorespiration Primary production

Gao et al. 2012 *Nature Climate Change*

High-CO2 grown

Phaedactylum

constatum

Lower (3-4 times) intracellular DIC

Liu et al. 2017 *Aquatic Microbial Ecology*

Rubisco

Carboxylation Oxygenation

Intracellular CO2/O2 ratio

Photorespiration

Gao et al. 2012 *Nature Climate Change*

Xu and Gao 2012 Plant Physiol.

Energetic costs:CCMs , acidic stress/photo-stress CO2-fertilization:CO2、HCO3-

Photosynthesis or Growth

Gao KS 2017 *Bioenergetics*

Diatoms

Growth rate reversed at higher **PAR levels, with the PAR thresholds** (daytime mean PAR levels) at the reversion points being about 160, 125 and 178 µmol photons $m^{-2} s^{-1}$ for P. tricornutum, T. pseudonana and S. *costatum*, respectively.

These light levels correspond to 22-36 % of incident surface solar PAR levels and are equivalent to PAR levels at 26-39 m depth in the **South China Sea**

Gao et al. Nature Climate Change 2012

Ocean acidification (OA) down-regulates CCMs, reducing intracellular "CO2"

photorespiration

Primary productivity of the SCS oligotrophic surface seawaters

Diatom growth response to OA

, depending on sunlight exposures, faster under low but slower under high sunlight levels.

Jin et al. 2017 MEPS

Xu and Gao 2012 Plant Physiol.

**50 individuals each treatment

Gao et al. 1991**

1. Photosynthesis / Growth

- **2. Metabolic Pathways**
- **3. Calcification (calcifying algae)**
- **4. Combined impacts with other stressors**

Changes in Energetics

Respiration rate in phytoplankton under OA and control

Hypothesis

To cope with the acidic stress induced by elevated CO₂, microalgae need extra **energy and may alter their metabolic pathways**

Physiological test in different systems

Mixed phytoplankton species

Protein analysis

Image acquisition

Protein spotting Protein lyse

Various proteins, that showed statistically significant alterations in abundance greater than 2-fold, in HC and LC treatments

Altered metabolic pathways under OA

Jin et al. 2015 *Nature Communications*

Contents of phenolic compounds in phytoplankton

Lab test

Jin et al. 2015 *Nature Communications*

Microcosm (30L) Mesocosm (4000L)

• **Kreb cycle and β-oxydation pathways are upregulated under OA, leading to higher contents of toxic phenolics**

Jin et al. 2015 *Nature Communications*

Contents of phenolic compounds in zooplankton that were fed on phytoplankton (HC, LC) from microcosm and mesocosm systems

Jin et al. 2015 *Nature Communications*

ARTICLE

Received 31 Mar 2015 | Accepted 24 Sep 2015 | Published 27 Oct 2015

DOI: 10.1038/ncomms9714

OPEN

Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

Peng Jin^{1,†}, Tifeng Wang¹, Nana Liu¹, Sam Dupont², John Beardall³, Philip W. Boyd⁴, Ulf Riebesell⁵ & Kunshan Gao¹

Ecological implications:

Increased accumulation of phenolic compounds in phytoplankton and zooplankton, implying a food chain impact.

- **1. Photosynthesis / Growth**
- **2. Metabolic Pathways**
- **3. Combined impacts with other stressors (UV & Virus)**

Xiamen

Monitored every second

UVB/PAR

UVA

UV penetration deep down to 50-70 m

UV-A 1. Evidence that UV-A alone drives photosynthesis 2. UV-A enhances photosynthetic carbon fixation on cloudy days

 0.8

0.6

280-700

Gao et al. 2007 Plant Physiology

320-700 (nm)

颗石藻(coccolithophore)

Corralling arguments

Hypothesis

Calcified layer or "shell" of calcifying algae may play protective roles against UV

Decreased carbonate ions associated with OA may decrease calcification

Synergestic impacts of OA + UV are expected

Coccolithophores (calcifying marine phytoplankton)

 After growth under OA condition for 1000 generations,declined calcification could not be recovered even after transferred to ambient low CO2 conditions and grown for 20 generations, reflecting an evolutionary response

P: PAR PA: PAR+UVA PAB: PAR+UVA+B

Gao et al. 2009 *Limnol. Ocean.*

Corraline algae

PIC / POC

Lower calcification

Gao and Zheng 2010 *Global Change Biol***.**

UV-absorbing compounds

Photosynthetic pigments

Gao and Zheng 2010 *Global Change Biol***.**

UVB(0.5-0.8% of PAR in terms of engergy) results in higher inhibition than UVA(14-16% of PAR)under influence of ocean acidification

Photosynthesis

Gao and Zheng 2010 *Global Change Biol***.**

Virus as a bio-stressor

Viral abundance in natural seawater104-108 particles mL-1

General hypothesis

- Changes in carbonate chemistry, induced by OA, can influence Redox activity at cell surface
- Such changes may affect viral attack to the host

Isolation and cloning of PgV

Viruses of *Phaeocystis globosa* (PgVs) were isolated, in November 2007, from the coastal waters of Shantou (23.3 °N, 116.6°E), when the algal bloom occurred. Seawater (10 L) was sampled at the end point of the algal bloom and filtered through 0.2 um pore-size cellulose acetate filters .The filtrate was then concentrated, by an ultrafiltration disc to 100 mL.The concentrated virus-size fraction was used for inocula, and the clonal isolate of PgV was obtained by a modified serial infection procedure .

Modified serial infection procedure: The virus-size fraction concentrate was allowed the state of *P.* **All and the to culture** of *P.* **All and the cultures of** *P.* **CO** globosa at 1% (vol/vol) and incubated for 10 days, during which time algal growth was mored via *in vivo* chlorophyll fluorescence. Samples from cultures in which lysis occurred were filtered through 0.2 µm pore-size cellulose acetate filters and a crude PgV lysate was obtain $\frac{10 \text{ um}}{2000}$ and the was i

added at 10% (vol/vol) to exponentially growing *P. globosa* cultures and incubated for 7 days, during which time algal growth was monitored again as above. The clonal lysate was obtained after the above procedure was repeated six times.

Fig. S2 Effective photochemical quantum yield (a) and cell density (b) of *P. globosa* and abundance of PgV (c) during viral infection of ambient-air-grown cultures. Open symbols represent uninfected cultures, while the solid symbols represent cultures to which PgVs were by the arrows. The data represent the mean \pm SD (n=3, triplicate cultures).

Fig. 3 Changes in cell (a) and virus (b) concentration of *P. globosa* during the burst size determination under different CO₂ (pH) treatments. HpH (= The data represent mean \pm SD (n = 3, triplicate cultures).

Chen et al. 2015 *Global Change Biology*

Fig. 2 Effects of ocean acidification on the interaction of *P. globosa* with its virus. HpH represents pH_{nbs}8.07; LpH, pH_{nbs}7.70; V, virus; P_n, net photosynthesis; R_d, dark respiration. Different superscript letters represent significant differences (p<0.05) among the treatments. The data represent means \pm SD (n = 3).

mitochondrial respiration by 28.6% and 56. **Chen et al. 2015** *Global Change Biology*he

• Ocean acidification (OA) (pCO2 rise) enhances diatoms growth under low and inhibits it under high levels of solar radiation

- OA increases phenolics contents in micro algae, stimulating Kreb cycle and ß-oxidation
- OA and UV synergistically reduce calcification of coralline algae and coccolithophores

Seawater acidification exacerbates virus attack to the red tide alga

2018 FOCE mesocosm Experiment(involved 12 Labs from 2 Universities)

Surface Seawater pCO2

July, much of the area of high CO_{2aq} in the

Southern Ocean south of 60 S is under ice

Reinfelder 2011 *Ann Rev Mar Sci*

Documented low pH in the Chinese coastal waters

Ocean acidification is occurring in the Chinese waters.

Sea(*JGR* 2011)

"中国海洋环境公报 2012" China marine Environ Report - Ozon Nord - - Ozon Süd

N=Northern hemisphere、S=Southern hemisphere

Ozone

Enhanced UV-B (280-315 nm, <1% solar PAR) due to ozone depletion is harmful to most organisms

Normal levels of solar UV-B is also harmful, damage biomolecules/DNA

Solar UV-A (315-400 nm, about 14-16% solar PAR) could be harmful or stimulative in terms of repairing UV-B-induced damages and enhancing photosynthesis, depending on its exposure levels

UNC 181-46-01083-781 中华人民共和国国家标准 **JGOFS Protocols** GB 12763-6-91 **Chapter 19. Primary Production by** ^{14}C 范 杳 Scope and field of application 1.0 The specification for oceanographic survey Marine biological survey Incubation Bottles: Polycarbonate 0.25 l bottles are used for the productivity incuba-5.8 tions. New bottles are soaked for 72 hours in a 5% solution of Micro detergent. Bot-**PAR UVR PAR UVR** Quartz Glass **Quartz** 1.0

PC

Marine Primary productivity investigation protocols have neglected UV radiation

incubations

