Effects of Ocean Acidification on Primary Producers

Kunshan GAO

State Key Laboratory of Marine Environmental Science (Xiamen University)

"Ocean Acidification" Nature (2003)

Hawaii Ocean Time Series http://hahana.soest.hawaii.edu/hot/

Ocean acidification alters carbonate chemistry

Gattuso et al. 2015 Science

Marine Photosynthesis accounts for about

Marine Photosynthesis drives oceanic biological CO2 pump that takes up (per hr) over **100** million tons of fossil fuel CO₂

Gattuso JP et al. 2015. Science

About 1272 papers on responses of marine photosynthetic organisms to OA till Jul. 1, 2018 (OA-ICC bibliographic database)

Nature 2000, 2011; Nat Clim Change 2012 Science 2017.....

Stimulating
Neutral
Inhibitive

Growth/Photosynthesis/Respiration/Calcification/N₂ fixation

 $\Omega = [CO_3^{2-}]_{MEAS} / [CO_3^{2-}]_{CAL}$

Effects of ocean acidification?

CO2 rise and acidic stress: double edged?

FOCE: Free Ocean CO2 Enrichment Exp.

Responses

1. Photosynthesis / Growth

- 2. Metabolic Pathways
- 3. Calcification (calcifying algae)
- 4. Combined impacts with other stressors

Supplementary Table 2. Locations of the stations, cruise information, sea surface temperature (SST, °C) and pH_T , $NO_3^- + NO_2$ (N, μ mol L^{-1}) and $PO_4^{3^*}$ (P, μ mol L^{-1}), solar PAR (mean, μ mol photons $m^{-2^*}s^{-1}$) during ¹⁴C-traced incubations, incubation time (h), surface seawater chlorophyll a concentration (Chl a, $\mu g L^{-1}$), chlorophyll a concentration ($\mu g L^{-1}$) of phytoplankton assemblages grown for 6-7 days under low CO_2 (LC,385 μ atm) and high CO_2 (HC, 800 μ atm for all stations except SEATS and C3, where 1000 μ atm CO_2 was applied), and the primary productivity (PP, triplicate incubations, $\mu g C L^{-1}h^{-1}$) by the phytoplankton assemblages grown in the low CO_2 microcosms at the end (day 7) of the growth-out in the microcosms. BLQ stands for "below the limit of quantification". The concentrations of the nutrients were determined by the chemistry group of Xiamen Univ. during the cruises. Chlorophyll a concentration in the microcosms at station PN07 was not measured (nd).

Station	Location	Season*	SST	рНт	N	Р	Solar PAR	Incubation time (h)	Chl a	Chl a (LC)	Chl a (HC)	РР
LE04	(18.0°N, 113.0°E)	Summer	29.5	8.03	BLQ	0.014	1681	6	0.05	0.15	0.13	0.10±0.08
PN07	(30.0°N, 124.5°E)	Summer	29.6	8.03	BLQ	0.019	1371	6	0.71	Nd	nd	0.18±0.12
A4	(20.8°N, 115.2°E)	Autumn	25.5	8.04	BLQ	0.156	794	6	0.44	1.08	0.69	2.73±0.32
E606	(18.9°N, 114.1°E)	Autumn	25.3	8.06	BLQ	BLQ	821	6	0.34	0.82	0.20	4.74±0.10
SEATS	(18.0°N, 116.0°E)	Spring	28.7	8.04	BLQ	0.037	1251	12 (24)	0.10	0.49	0.59	2.08±0.14 (19.80±1.09) ^{**}
C3	(20.6°N, 114.2°E)	Spring	28.5	8.03	BLQ	0.032	1027	12 (24)	0.21	0.42	0.36	1.83±0.06 (16.28±0.73) ^{**}

Gao et al. 2012 Nature Climate Change (Supplementary data)

intracellular dissolved inorganic carbon concentration up to 1000 times that of milieu CCMs HCO₃-CA HCO₃ Calvin CO_{c} cycle CO_2

> Acidic stress + photorespiration Primary production

High-CO2 grown

Phaedactylum

constatum

Lower (3-4 times) intracellular DIC

Liu et al. 2017 Aquatic Microbial Ecology

Rubisco

Carboxylation Oxygenation

Intracellular CO_2/O_2 ratio

Photorespiration

Gao et al. 2012 Nature Climate Change

Xu and Gao 2012 Plant Physiol.

Energetic costs: CCMs, acidic stress/photo-stress CO2-fertilization: CO_2 , HCO_3^-

Photosynthesis or Growth

Gao KS 2017 Bioenergetics

Diatoms

Growth rate reversed at higher PAR levels, with the PAR thresholds (daytime mean PAR levels) at the reversion points being about 160, 125 and 178 μ mol photons m⁻² s⁻¹ for *P. tricornutum*, *T. pseudonana* and *S. costatum*, respectively.

These light levels correspond to 22-36 % of incident surface solar PAR levels and are equivalent to PAR levels at 26-39 m depth in the South China Sea

Gao et al. Nature Climate Change 2012

Ocean acidification (OA) down-regulates CCMs, reducing intracellular "CO2"

photorespiration

Primary productivity of the SCS oligotrophic surface seawaters

Diatom growth response to OA

, depending on sunlight exposures, faster under low but slower under high sunlight levels.

Jin et al. 2017 MEPS

Xu and Gao 2012 Plant Physiol.

50 individuals each treatment

Gao et al. 1991

1. Photosynthesis / Growth

- 2. Metabolic Pathways
- 3. Calcification (calcifying algae)
- 4. Combined impacts with other stressors

Changes in Energetics

Respiration rate in phytoplankton under OA and control

Jin et al. 2015 Nature Communication

Hypothesis

To cope with the acidic stress induced by elevated CO₂, microalgae need extra energy and may alter their metabolic pathways

Physiological test in different systems

Mixed phytoplankton species

Protein analysis

Sample preparation

Image acquisition

<u>TOF 5800</u> Proteomics Analyzer

<u>Protein spotting</u>

Protein lys

Spot cut

Various proteins, that showed statistically significant alterations in abundance greater than 2-fold, in HC and LC treatments

Spot		GI	Protein score C.I. (%)	Total Ion C. I. %	Protein score (peptides)		Fold c		
Îd.	Protein identity	number				MW/pI	High CO ₂	Low CO ₂	Function
3	Propionyl CoA synthase	239994558	100	100	357(14)	69708.5/5.51	2.33	1.00	β-oxidation
4	Serine protein kinase	239995429	100	99.946	177(15)	74347.3/5.31	2.82	1.00	Protein kinase, signal transduction
9	Hypothetical protein AmacA_2	223994739	100	100	805(22)	51069.6/5.61	2.01	1.00	Unknown
11	Hypothetical protein MDMS009_211	254489880	100	100	440(11)	447891.1/4.87	1.00	4.34	Unknown
12	Methane/ phenol/ toluene hydroxylase	148260382	100	100	238(5)	39315.7/5.76	3.40	1.00	Phenol biodegradation
13	Acyl-CoA dehydrogenase family protein	83943662	100	100	438(18)	44108.4/5.55	1.00	2.66	β-oxidation
14	Chloroplast glyceraldehyde-3- phosphate dehydrogenase	77024139	100	100	336(7)	44096.1/5.2	2.92	1.00	Glycolysis
15	Conserved hypothetical protein (bacterium S5)	288797257	100	99.996	166(7)	21306.1/4.87	2.50	1.00	Unknown
17	Enoyl-CoA hydratase	83955054	99.996	98.89	115(8)	28178.9/5.51	3.82	1.00	β-oxidation
19	Adenylate kinase	239993306	100	100	600(16)	23693/4.99	2.12	1.00	ATP synthesis
21	TRAP-T family protein transporter periplasmic binding protein	83943788	100	100	811(17)	39967.7/4.56	3.04	1.00	Substrate-binding protein (SBP)- dependent secondary transporters
24	Nucleoside diphosphate kinase	114765301	100	100	352(6)	15293.7/4.93	1.00	2.10	Catalyze the transfer of a phosphate from a NTP to NDP

Altered metabolic pathways under OA

Jin et al. 2015 Nature Communications

Contents of phenolic compounds in phytoplankton

Lab test

Jin et al. 2015 Nature Communications

Microcosm (30L)

Mesocosm (4000L)

 Kreb cycle and β-oxydation pathways are upregulated under OA, leading to higher contents of toxic phenolics

Jin et al. 2015 Nature Communications

Contents of phenolic compounds in zooplankton that were fed on phytoplankton (HC, LC) from microcosm and mesocosm systems

Ph D student: Tifeng Wang

Jin et al. 2015 Nature Communications

ARTICLE

Received 31 Mar 2015 | Accepted 24 Sep 2015 | Published 27 Oct 2015

DOI: 10.1038/ncomms9714

OPEN

Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

Peng Jin^{1,†}, Tifeng Wang¹, Nana Liu¹, Sam Dupont², John Beardall³, Philip W. Boyd⁴, Ulf Riebesell⁵ & Kunshan Gao¹

Ecological implications:

Increased accumulation of phenolic compounds in phytoplankton and zooplankton, implying a food chain impact.

- 1. Photosynthesis / Growth
- 2. Metabolic Pathways
- 3. Combined impacts with other stressors (UV & Virus)

Xiamen

UVB/PAR

UVA

Nation of all fight

1. Evidence that UV-A alone drives photosynthesis 2. UV-A enhances photosynthetic carbon fixation on cloudy days UV-A

66<u></u>99

"

Gao et al. 2007 Plant Physiology

颗石藻 (coccolithophore)

Corralling argue

Hypothesis

Calcified layer or "shell" of calcifying algae may play protective roles against UV

Decreased carbonate ions associated with OA may decrease calcification

Synergestic impacts of OA + UV are expected

Coccolithophores (calcifying marine phytoplankton)

After growth under OA condition for 1000 generations, declined calcification could not be recovered even after transferred to ambient low **CO2** conditions and grown for 20 generations, reflecting an evolutionary response

P: PAR PA: PAR+UVA PAB: PAR+UVA+B

Gao et al. 2009 Limnol. Ocean.

Corraline algae

Lower calcification

Gao and Zheng 2010 Global Change Biol.

UV-absorbing compounds

Photosynthetic pigments

Gao and Zheng 2010 Global Change Biol.

UVB (0.5-0.8% of PAR in terms of engergy) results in higher inhibition than UVA (14-16% of PAR) under influence of ocean acidification

Photosynthesis

Gao and Zheng 2010 Global Change Biol.

Virus as a bio-stressor

Viral abundance in natural seawater10⁴-10⁸ particles mL⁻¹

General hypothesis

- Changes in carbonate chemistry, induced by OA, can influence Redox activity at cell surface
- Such changes may affect viral attack to the host

Isolation and cloning of PgV

Viruses of Phaeocystis globosa (PgVs) were isolated, in November 2007, from the coastal waters of Shantou (23.3 °N, 116.6°E), when the algal bloom occurred. Seawater (10 L) was sampled at the end point of the algal bloom and filtered through 0.2 μ m pore-size cellulose acetate filters .The filtrate was then concentrated, by an ultrafiltration disc to 100 mL.The concentrated virus-size fraction was used for inocula, and the clonal isolate of PgV was obtained by a modified serial infection procedure .

Modified serial infection procedure: The virus-size fraction concentrate war globosa at 1% (vol/vol) and incubated for 10 days, during which time algal g in vivo chlorophyll fluorescence. Samples from cultures in which lysis occurr 0.2 µm pore-size cellulose acetate filters and a crude PgV lysate was obtain.

added at 10% (vol/vol) to exponentially growing *P. globosa* cultures and incubated for 7 days, during which time algal growth was monitored again as above. The clonal lysate was obtained after the above procedure was repeated six times.

ures of P. tored via I through te was

Fig. S2 Effective photochemical quantum yield (a) and cell density (b) of P. globosa and abundance of PgV (c) during viral infection of ambient-air-grown cultures. Open symbols represent uninfected cultures, while the solid symbols represent cultures to which PgVs were by the arrows. The data represent the mean \pm SD (n=3, triplicate cultures).

Fig. 3 Changes in cell (a) and virus (b) concentration of P. globosa during the burst size determination under different CO₂ (pH) treatments. HpH (= The data represent mean \pm SD (n = 3, triplicate cultures).

Chen et al. 2015 Global Change Biology

Fig. 2 Effects of ocean acidification on the interaction of *P. globosa* with its virus. HpH represents $pH_{nbs}8.07$; LpH, $pH_{nbs}7.70$; V, virus; P_n , net photosynthesis; R_d , dark respiration. Different superscript letters represent significant differences (p<0.05) among the treatments. The data represent means \pm SD (n = 3).

Viral infection reduced the Pn by 16.6% in the high-pH and by 16.7% in the low-pH grown P. globosa. Both Low pH treatment and viral infection significantly increased the alga's mitochondrial respiration by 28.6% and 56. Chenret alge/2015 Global Change Biology^{ne} stimulation of respiration following infection was 57.4%, but in the high CO₂ grown cells, the

 Ocean acidification (OA) (pCO2 rise) enhances diatoms growth under low and inhibits it under high levels of solar radiation

- OA increases phenolics contents in micro algae, stimulating Kreb cycle and ß-oxidation
- OA and UV synergistically reduce calcification of coralline algae and coccolithophores

• Seawater acidification exacerbates virus attack to the red tide alga

2018 FOCE mesocosm Experiment (involved 12 Labs from 2 Universities)

Surface Seawater pCO₂

July, much of the area of high CO_{2aq} in the

Southern Ocean south of 60 S is under ice

Reinfelder 2011 Ann Rev Mar Sci

Documented low pH in the Chinese coastal waters

Regions	Lo	w pH
The Bohai Sea (<i>Chinese</i> <i>Science Bulletin 2012</i>)	H	7.64 + rise by 220%
The Yellow Sea (<i>Biogeosciences 2014</i>)		7.80
The East China Sea (<i>Biogeosciences 2013</i>)		7.80
The Northern South China		7.9

Ocean acidification is occurring in the Chinese waters.

(*JGR* 2011) Sea

'中国海洋环境公报 2012" China marine Environ Report - Ozon Nord - Ozon Süd

N=Northern hemisphere、S=Southern hemisphere

NASA

Ozone

2003

Enhanced UV-B (280-315 nm, <1% solar PAR) due to ozone depletion is harmful to most organisms

Normal levels of solar UV-B is also harmful, damage biomolecules/DNA

Solar UV-A (315-400 nm, about 14-16% solar PAR) could be harmful or stimulative in terms of repairing UV-B-induced damages and enhancing photosynthesis, depending on its exposure levels

