November 1, 2018

PICES-2018 Annual Meeting:

Toward integrated understanding of ecosystem variability in the North Pacific

> Oct 25 – Nov 4, 2018 Yokohama, Japan

Practical procedure for potential fishing zone prediction of neon flying squid (*Ommastrephes bartramii*) in the north western North Pacific

Sei-Ichi Saitoh¹, Irene Alabia¹, Hiromichi Igarashi², Yoichi Ishikawa², Masafumi Kamachi² and Yutaka Imamura³

¹Arctic Research Center, Hokkaido University (ARC-HU) ²Japan Agency for Marine Earth-Science and Technology (JAMSTEC ³Aomori Prefectural Industrial Technology Research Center *ssaitoh*@arc.hokudai.ac.jp

Outline

Introduction

Eddy year – Non-eddy year Data and method Result and discussion Model validation Concluding remarks

Neon flying squid (Ommastrephes bartramii)

Pin-point PFZ prediction

Improving HSI model

HSI model Parameters

SST S330 V138 Vscal480

WCR (Jan.-Feb.2006)

Subsurface Structure

50m,100m,200m Temp.: JMR HP

Thin or Thick Structure

Subsurface structure

H

HOKKAIDO UNIVERSITY

HSI model (MOVE-3D)

0.8

0.7

0.6

0.5

0.4

Southward transition of the actual fishing ground corresponding to the movement of the anti-cyclonic eddy is well-reproduced.

WCR chl-a (Jan.-Feb.2006)

chl-a[MODISA] FEB2006 0.47 44N 0.44 43N 0.41 42N 0.38 41N 0.35 40N 0.32 39N 0.29 38N 0.26 37N 0.23 36N 0.2 35N 140E 141E 142E 143E 144E 145E 146E 147E 148E 149E 150E

0.47

0.44

0.41

0.38

0.35

0.32

0.29

0.26

0.23

0.2

Why eddy is important for neon flying squid

High chl concentration around WCR

- good feeding environment

Thick structure of WCR

- avoiding from predators

 adaptation to warm environment for southward migration

9

- Propose a practical procedure to use synchronize the model for eddy year or non-eddy year.
- Apply results to operational use

Date and Method

Fishery data

Commercial fisheries data of neon flying squid from January to February during 2001-2011

(by Aomori Prefectural Industrial Technology Research Center) the dates of fishing, fishing locations, CPUE(No./hour/machine)

3D-VAR data assimilation product

MOVE(MRI Multivariate Ocean Variational Estimation) Temperature, Salinity, Current velocity(U,V,W),SSH (0.1deg, vertical 54 levels, 5-days → daily interpolated)

HSI model : MaxEnt (Machine learnig model)

No fishing activities: 2015 and 2016

January

12

February

March

Classification of eddy and non-eddy model

Eddy year (2002, 2005-06, 2008, 2010-11)

14

Non-eddy year (2001, 2003-04,2007, 2009)

Classification of eddy and non-eddy model

15

AUC : Training and Testing

Winter (Jan-Feb) MaxEnt models	Temporal coverage	Training AUC (70%)	Testing AUC (30%)
Eddy-year model	2002,2005- 2006, 2008, 2010-11	0.919	0.918 ±0.004
Non-eddy-year model	2001, 2003-04, 2007, 2009	0.953	0.953 ± 0.003
All-year model	2001-2011	0.925	$\textbf{0.932} \pm \textbf{0.003}$

Prediction performance when applied to year with characteristic mesoscale conditions (eddy year: Jan-Feb 2017 daily predictions)

AUC : Eddy-year – Non-eddy year

Winter (Jan-Feb) MaxEnt models	AUC	TSS	POD
Eddy-year model	0.903	0.589	1.000
Non-eddy-year model	0.722	-0.026	0.898
All-year model	0.844	0.429	1.000

Model variables: T01 (surface temp: 0.5*-1m), S22 (salinity 330m), SSH, V14 (N-S velocity component 138m) *used for model building (move data); 1m-prediction (JMA data)

TSS(True Skill Statistic): to evaluate the predictive accuracy of a given species distribution model.

17

1 NOV. 2016

Daily 200m temperatures 01 Nov. 2016

1 DEC. 2016

Daily 200m temperatures 01 Dec. 2016

1 JAN. 2017

Daily 200m temperatures 01 Jan. 2017 45°N-- 15 14-13/2 40°N-1₽. 197 12_ 8 12 13 11 -11

14 13 17

145°E

35°N

140°E

150°E

-10

1 FEB. 2017

Daily 200m temperatures 01 Feb. 2017

1 MAR. 2017

Daily 200m temperatures 01 Mar. 2017

15MAR. 2017

Daily 200m temperatures 15 Mar. 2017

Decision making : To go or not to go²⁴

Common flying squid

VIIRS Day Night Band SDR

UTC: 27 January 2014 15:51-15:57 Local time: 24:51-24:57

Neon flying squid

Reported location of fishing vessel for Neon flying squid

Practical procedure for potential fishing zone prediction

Concluding remarks

- We propose a practical procedure to use synchronize the model for eddy year or non-eddy year.
- In the case of 2017, eddy year, in advance two months before fishing season, we can identify eddy develop or eddy nondevelop.
- We can advise fisher to decide to go to off Sanriku to catch neon flying squid, not to go to Japan Sea to catch common flying squid as fishing strategy.
- This practical procedure could be useful for economic catch planning and tactical fisheries activities management.

Thank you for your attention!

