Application of time series analysis to detect the effect of multi-scale climate indices on global yellowfin tuna population

Yan-Lun, Wu*、Kuo-Wei, Lan

Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Taiwan, R.O.C. Center of Excellence for Oceans, Keelung 20224, Taiwan, R.O.C.

PICES-2018 Annual Meeting Oct 25 – Nov 4, 2018 Yokohama, Japan

Introduction

Climate change

Harris, et al.(2014) indicates the Atlantic Multidecadal Oscillation is a driver of diatom abundance.

The NAO accounts for 24.38% of the variation in the first PC.

Shows that synchronous shifts in climate patterns and community variability are related to changes in oceanic environment.

Climate variability

Atlantic Multidecadal Oscillation (AMO)

Indian Ocean Dipole (IOD)

North Pacific Gyre Oscillation (NPGO) Pacific Decadal Oscillation(PDO) Oceanic Nino Index (ONI)

Marine environment

Climate

change

Extreme climate

Global warming Greenhouse effect

> Rising sea level Heat wave Desertification

Tuna Fisheries Related to Climate index

1. Purse seiners and industrial longline dominated.

Yellowfin tuna

- 2. Albacore, bigeye, skipjack and yellowfin tuna are the main species.
- 3. Yellowfin tuna is the second largest tuna fishery in the world.

Mean annual distribution of global yellowfin tuna catch by fishing gear type from 1950 to 2013, Pecoraro, C., et al.(2014)

Average catches of tropical tunas caught by longliners(1997-2006), Fonteneau and Halliear,(2014) The environmental processes associated with the Indian Ocean Dipole that drive variability in tuna populations (Lan, 2013)

(Meyers G, 2007)

(g) La Nina

Introduction

Global scale distribution and habitat preference research

Monllor-Hurtado, et al.(2016) shows the shift of tuna catches in subtropical latitudes on a global scale.

Fonteneau (2014) collected and analyzed the big-eye and yellowfin tuna tagged data.

Arrizabalaga, et al,(2015) analyses the habitat preferences of six tuna species around the world.

Introduction

Purpose of Study

- Synchronous shifts in climate patterns and community variability are related to changes in oceanic environment.
- 2. Variations in the abundance and distribution of pelagic tuna populations have been associated with large-scale climate indices.
- 3. Fluctuations in tuna populations might not simply be determined by single climate indices.
- 4. In our study, we will use a global scale sight to investigate the relationship between climate indices and tuna populations.

Study Process

Fishery data

Selection

We removed the data from TRFMOs which didn't include fishing positions(latitude and longitude), fishing effort (number of hooks), fishing date, and catch (in number).

	Period	Resolution	Taiwanese data	Other countries data	Data source
Atlantic Ocean				Japan, USA	ICCAT
Eastern Pacific			Overseas	Japan	IATTC
Western Pacific	1986- 2010	5°x5°	Developme nt Council of the	All convention members	WCPFC
Eastern Indian	-	Republic China			1070
Western Indian				Japan	1010

Analysis

Catch rates

	$\sum_{i=1}^{n} N_{ij}$
-j —	$\overline{\sum_{i=1}^{n} E_{ij}}$

G

 $\begin{array}{l} C: \mbox{ catch rates} \\ N_{ij}: \mbox{ catch (in number)} \\ E_{ij}: \mbox{ number of hooks} \\ i \mbox{ and } j: \mbox{ fishing positions} \end{array}$

Gravity of fishing grounds

$$V_{mi} = \frac{\sum L_{ymi} \times CPUE_{ymi}}{\sum CPUE_{ymi}}$$

y: year m:month G : longitudinal gravity of fishing grounds Materials and methods

Climate indices

Decadal(long-term)

Time series analysis

Definition : a series of data points indexed or listed in time order.

- 1. Time series analyses are valuable tools for investigating long-term fluctuations in fish populations and relationships between populations and environmental variables.
- 2. There are several types of motivation and data analysis available for time series which are appropriate for different purposes and etc.

Time-domain

Multiple regression

We used stepwise multivariate regression to obtain the best-fit model.

 $y_i = \beta_0 + \sum_{j=1}^n \beta_j X_{ij} + \varepsilon_i$

Cross correlation

Cross-correlation function was used to examine the time lag relationships be-tween the population of yellowfin tuna and climatic indices corresponding to the Pearson correlation.

Frequency-domain

Morlet mother wavelet

 $\psi_0(\eta) = \pi^{-1/4} e^{i \, \varpi o} e^{-\eta^2/2}$

 η : a dimensionless time parameter

$$\mathcal{O}_0$$
: a dimensionless frequency

Wavelet coherency

$$W^{XY} = W^X W^{Y*}$$

(The cross-wavelet transformation of the two series)

$$R_n^2(s) = \frac{\left|S(s^{-1}W_n^{XY}(s))\right|^2}{S(s^{-1}W_n^X(S))^2 \cdot S(s^{-1}W_n^Y(S))^2}$$

S: a smoothing operator by a running average

Spatial distribution

Results

Catch rates and gravity of fishing grounds

Time series of catch rates

Time series of gravity of fishing grounds

Results of Pearson correlation (catch rates)

	ATL	Western PAC	Eastern PAC	Western IDO	Eastern IDO
ATL					
Western PAC	0.25*				
Eastern PAC	0.11	0.42*			
Western IDO	-0.09	0.03	-0.29*		
Eastern IDO	-0.08	0.04	-0.19*	0.51*	

Results of Pearson correlation (gravity of fishing grounds)

Longitiudinal	ATL	IDO	PAC	
ATL	-	-0.43*	0.04	ATL : Atlantic Ocean
IDO	0.47*		0.1	IDO : Indian Ocean
PAC	0.17	0.48*		11

Multiple regression

Results of regression analysis of YFT catch rates against climate indices

			Atlantic		Eastern Pacific		Western Pacific			Eastern Indian			Western Indian			n					
Climate	Time	Multiple	regression	Tir	ne lag	Mul regre	ltiple ession	Time	lag	Multiple	regression	Tim	ie lag	Mu regr	Iltiple ession	Tim	ne lag	Mu regr	ltiple ession	Tim	e lag
indices	Scale	beta	p value	lag	R	beta	p-level	lag	R	beta	p-level	lag	R	beta	p-level	lag	R	beta	p-level	lag	R
AMO		-0.46	0.00	7	-0.37	-0.22	0.00		-	-0.37	0.00	0	-0.48	-0.20	0.00	0	-0.2	-0.05	0.42		
NPGO	Decadal	0.16	0.01			0.04	0.52		-	-0.17	0.00	1	-0.36	0.15	0.02	-		-0.09	0.17		
PDO		-0.14	0.04	7	0.27	-0.09	0.20		-	0.13	0.04	9	0.4	0.21	0.00	-		0.22	0.00	1	0.3
DMI	Inter-	-0.14	0.04		-	0.09	0.22		-	-0.11	0.06	20	-0.23	-0.05	0.50			-0.17	0.01	19	0.25
ONI	annual	0.21	0.01			0.04	0.66		-	-0.06	0.37			-0.12	0.12			0.05	0.49		

Results of regression analysis of Taiwanese YFT gravity of fishing grounds against climate indices

Climate	Time Atl		antic	Easterr	n Pacific	Wester	n Pacific	Easteri	n Indian	Western Indian	
indices	scale	beta	p-level	beta	p-level	beta	p-level	beta	p-level	beta	p-level
AMO		0.48	0.00	0.02	0.78	0.12	0.03	-0.41	0.00	-0.46	0.00
NPGO	Decadal	-0.17	0.00	0.17	0.01	0.28	0.00	0.05	0.34	0.04	0.45
PDO		-0.07	0.22	0.17	0.01	-0.14	0.02	0.18	0.00	-0.06	0.32
DMI	Inter-	0.10	0.07	-0.06	0.34	0.11	0.05	0.22	0.00	-0.15	0.01
ONI	annual	0.08	0.17	0.10	0.16	0.17	0.01	-0.15	0.01	0.09	0.13

Wavelet analysis

Cross-wavelet coherence between climatic indices and yellowfin tuna catch rates

Climate indices	Area	Correlation	1-2y	2-4y	4-8y
	ATL	+		2000-2006	
AMO	Western PAC	+	1986-1990 1994-2000		
	ATL	+	1986-1992		1986-1996
NPGO	Western PAC	-	1992-2000		
	Eastern IDO	+	1992-1998		
	ATL	-	1986-1996		
	Western PAC	+	1990-1994	1998-2006	
PDO	Eastern IDO	-	1986-1990		1986-2010
	Western IDO	+	2004-2010	1986-1996	
	ATL	+	2002-2010		
DMI	Western PAC	-	1994-2002 2006-2010		1986-2010
	Western IDO	-	2004-2010	1998-2000	

PDO v.s west PAC catch rates

PDO v.s west IDO catch rates

Wavelet analysis

Cross-wavelet coherence between fishing grounds and yellowfin tuna catches rates

Climate indices	Area	Correlatio n	1-2y	1-4y	2-4y	4-8y	8-16y
	ATL	+			1998-2006		
AMO	Eastern IDO	-			1982-1996		
	Eastern PAC	+			2002-2010		
	ATL	-			1998-2002		
	Eastern IDO	+		1981-1988			1981-2010
NPGO	Western IDO	-		2004-2010	1981-1995 1990-1994	1981-2010	
	Eastern PAC	+			1981-1985		1981-2010
	ATL	-	1996- 2006				1981-2002
PDO	Eastern PAC		1996- 1999			1986-2010	1981-2010
	Western PAC	-			1998-2002	1981-2010	
DMI	Western IDO	-	2002- 2010		1988-2006		1981-2010
	Western PAC	-		1981-1990	1992-2002	2002-2010	

PDO v.s. eastern Pacific

DMI v.s. western Pacific

982 1986 1990 1994 1998 2002 2006

Discussion

The relationship between climate indices, catch rates and gravity of fishing grounds.

The population abundances were effected by the long term climate indices.

The fishing locations were effected by the short term climate indices.

(Lan,2012)

Western Indian Ocean I	Eastern Indian Ocean	Western Pacific Ocean	, Eastern Pacific Ocean	Atlantic Ocean	1. Lan (2012) indicated the gravity of YFT fishing
1986-2010(-) DM	1986-1990(+)		i		grounds
					showed similar variations
	1981-1990(-)ON	1981-1988(+)			with DMI.
	1981-1988(+)	PDO 1988-1992(-)	1998-2002(+)		 Wavelet analysis showed a significant negative
-		2004-2010(+)	NPGO 1981-1990(+)	1998-2010(-)	correlation between DMI
1984-1996(-) AMC	1984-1992(+)	1981-1998(+)		AMO 1998-2010(-	and CPUE with a
1			1		periodicity of 2-3yr.
	Western Indian Ocean 1986-2010(-) DM 1984-1996(-) AMO	Western Indian Ocean 1986-2010(-) DMI 1986-1990(-) OMI 1981-1990(-) ON 1981-1988(+) 1984-1996(-) AMO 1984-1992(+)	Western Indian Ocean Eastern Indian Ocean Western Pacific Ocean 1986-2010(-) DMI 1986-1990(+) 1981-1988(+) 1981-1990(-)ONI 1981-1988(+) 1981-1988(+) 1981-1988(+) 1981-1988(+) 2004-2010(+) 1984-1996(-)AMO 1984-1992(+) 1981-1998(+)	Western Indian Ocean Eastern Indian Ocean Western Pacific Ocean Eastern Pacific Ocean 1986-2010(-) DMI 1986-1990(+) 1981-1988(+) 1981-1988(+) 1981-1990(-)ONI 1981-1988(+) 1988-2002(+) 1981-1988(+) 1981-1988(+) 1998-2002(+) 2004-2010(+) NPGO 1981-1990(+ 1984-1996(-) AMO 1984-1992(+) 1981-1998(+)	Western Indian Ocean Eastern Indian Ocean Western Pacific. Eastern Pacific Ocean Atlantic Ocean 1986-2010(-) DMI 1986-1990(+) 1981-1990(-) Ocean Ocean 1988-2010(-) DMI 1986-1990(+) 1981-1988(+) 1981-1988(+) Image: Comparison of the second sec

Discussion

Research gap in the Eastern Indian Ocean and Eastern Pacific Ocean?

- 1. The population abundances were effected by the long term climate indices (AMO, NPGO and PDO).
- 2. The fishing locations were effected by the short term climate indices (DMI, OMI).
- 3. Future programs should be provide the basic parameters of yellowfin tuna predicated spatial model.

Thank you for your attention!!

