PICES-2018 Annual Meeting

Toward integrated understanding of ecosystem variability in the North Pacific

Evaluating the performance of size-frequency based methods for estimating fishing mortality of Fang's blenny (*Pholis fangi*)

Ocean University of China College of Fisheries Lab of Fisheries Ecosystem Monitoring and Assessment (FEMA)

Ning Chen, Chongliang Zhang, Ming Sun, Binduo Xu, Ying Xue, Yiping Ren*, Yong Chen Email: chenning2088@stu.ouc.edu.cn

> Yokohama, Japan Oct. 25 — Nov. 4, 2018

- > Strict data requirements for traditional fishery stock assessment methods.
- > Data-poor situation are still prevalent for fish stocks in many regions.

The importance and practicality of length(weight) data.

- easily collected and ready to use for almost all stocks
- include useful information of fishery stocks maturity, growth, natural mortality, fishing selectivity

Increasing efforts in methodological development for data-poor stock assessment especially in size-based stock assessment methods.

Background

ARTICLE

Accounting for variable recruitment and fishing mortality in length-based stock assessments for data-limited fisheries Merrill B. Rudd and James T. Thorson

Length-based Integrated Mixed **Effects (LIME) method**

A new approach for estimating stock status from length frequency data

Rainer Froese^{1,*}, Henning Winker^{2,3}, Gianpaolo Coro⁴, Nazli Demirel⁵, Athanassios C. Tsikliras⁶, Donna Dimarchopoulou⁶, Giuseppe Scarcella⁷, Wolfgang Nikolaus Probst⁸, Manuel Dureuil^{9,10}, and Daniel Pauly¹¹

length-based Bayesian biomass estimation method (LBB)

Methods in Ecology and Evolution

ECOLOGICA doi:10.1111/2041-210X.12791

APPLICATION

Methods in Ecology and Evolution 2017

TropFishR: an R package for fisheries analysis with length-frequency data

Tobias Karl Mildenberger*,¹, Marc Hollis Taylor² and Matthias Wolff³

¹National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark; ² Johann Heinrich von Thünen Institute, Palmaille 9, 22767 Hamburg-Altona, Germany; and ³Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstr. 6, 28359 Bremen, Germany

TropFishR

RESEARCHARTICLE

Length-Based Assessment of Coral Reef Fish Populations in the Main and Northwestern Hawaiian Islands

Marc O. Nadon^{1,2,3}*, Jerald S. Ault¹, Nor D. Williams³, Steven G. Smith¹, Gerard T. DiNardo³

1 University of Miami, Rosenstel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL, 33 149, United States of America, 2 Joint Institute for Marine and Atmospheric Research, 1000 Pope Road, Honolulu, HI, 96822 United States of America, 3 NOAA Fisheries, Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Honolulu, HI, 96818, United States of America

* marc.nadon@noaa.gov

Mean-length mortality estimation methods

Length based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau

Jeremy Prince^{a,*}, Steven Victor^b, Valentino Kloulchad^c, Adrian Hordyk^d

* Blospherics P/L, PO Box 168, South Fremantle 6162, WA, Australia ^bThe Nature Conservancy, IN) Rox 1738, Karor 96940, Palau * Ebill Society Inc., PO Box 3089, Koror 96940, Palau ^d Centre For Fish, Fisheries and Aquatic Ecosystems Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch 6150, WA, Australia

Length based SPR assessment (LBSPR)

ICES Journal of Marine Science (2017), 74(1), 69-77. doi:10.1093/icesjms/fsw145

Original Article

Estimating uncertainty of data limited stock assessments

Alexandros Kokkalis^{1,*}, Anne Maria Eikeset², Uffe H. Thygesen¹, Petur Steingrund³, and Ken H. Andersen¹

Evaluating the reliability and comparing the ods
 robustness of size-frequency based methods
 1. Using simulated data
 2. Using observed data

Research object and area

Fang's blenny (Pholis fangi) Small scale fishery Important ecological significance Lack of assessment

Haizhou Bay, China from 2011 to 2016 (except for 2012) Sample size: 2679 in spring, 622 in fall

Evaluating the reliability and comparing the robustness of size-frequency based methods 1. Using simulated data 2. Using observed data

Workflow

Using simulated data

The "true " blenny fishery

The "true " blenny fishery

Generated lengthfrequency data

ELEFAN method was used to estimated K and asymptotic body length.
Pauly's empirical formula was used to estimate M.
The catch curve method was used to estimate total mortality (Z).
Fishing mortality was calculated from M and Z accordingly by F=Z-M.

Estimated Fishing mortality of different size-based methods

Year	TR	s6	LIME	TRUE
1		0.50	0.45	0.52
2		0.59	0.41	0.50
3		0.74	0.37	0.60
4		0.48	0.35	0.54
5		0.61	0.35	0.49
6		0.57	0.35	0.41
7		0.46	0.36	0.58
8		0.52	0.38	0.51
9		0.50	0.39	0.52
10		0 56	0.39	0.57
average	0.56	0.55	0.38	0.52

Evaluating the reliability and comparing the robustness of size-frequency based methods 1. Using simulated data

2. Using observed data

- Performance consistence
- Data dependency

Evaluating the reliability and comparing the robustness of size-frequency based methods 1. Using simulated data

2. Using observed data

- Performance consistence
- Data dependency

Performance consistence

Estimated stock exploitation of Fang's blenny

		Spring			fall		
Model	Year	F	F _{msy}	F/F _{msy}	F	F _{msy}	F/F _{msy}
S6model	2011	2.34	0.67	3.49	0.61	1.18	0.52
	2013	1.43	0.62	2.30	0.49	1.05	0.47
	2014	1.37	0.62	2.21	0.53	1.62	0.32
	2015	0.78	0.68	1.16	0.48	0.97	0.50
	2016	1.87	0.65	2.85	0.55	1.51	0.36
	2011-2016	1.56	0.65	2 40	0.53	1.26	0.43
TtopFishR		F	F _{msy}	F/Fmy	F	F _{msy}	F/F _{mc}
	2011-2016	1.06	0.52	2 05	0.28	0.68	0.41
				()			

F/Fmsy varied substantially among seasons: much higher in spring than in fall Remarkable overfishing (F/Fmsy>1) in spring Less fishing effort in fall. Evaluating the reliability and comparing the robustness of size-frequency based methods 1. Using simulated data

2. Using observed data

- Performance consistence
- Data dependency

Data dependency of s6model

- The estimated F was gradually stable.
- Remarkable variations of F were detected among years.
- F_{msy} decreased with sample size between 100 and 500 and increased when sample size was larger.
- The standard deviation tended to decrease.

- The estimation was less influenced by data size, both F and Fmsy showed slight changes.
- The estimation of F showed a minor increase while Fmsy showed a minor decline with the increase of sample size.
- The standard deviations were stable.

- The consistency of the method evaluation results indicated the potential and feasibility of data-limited methods in stock assessment.
- The high fishing mortality in spring and low mortality in fall accorded to the observed fishing effort in HaiZhou Bay, and the results reflected the seasonal **dynamics** of blenny fishery and its **biological characteristics**.
- The results suggested that **TropFishR** was more robust on sample size and more suitable for the assessment of stock exploitation status when the amount of data is substantially insufficient.
- The importance of data quality.

• Limitation:

Fisheries species with **different life history characteristics** should be tested within the data-limited methods;

The **biological and model uncertainties** should be accounted for in stock assessment and future fisheries management.

Acknowledgements

We thank the members of the Lab of Fisheries Ecosystem Monitoring and Assessment in Ocean University of China for their technical support and perspectives

PICES-2018 Annual Meeting

Toward integrated understanding of ecosystem variability in the North Pacific

Thanks for your listening!

Ocean University of China College of Fisheries Lab of Fisheries Ecosystem Monitoring and Assessment (FEMA)

Ning Chen, Chongliang Zhang, Ming Sun, Binduo Xu, Ying Xue, Yiping Ren*, Yong Chen Email: chenning2088@stu.ouc.edu.cn

> Yokohama, Japan Oct. 25 — Nov. 4, 2018