

Potential impact of ocean circulation on Japanese eel larvae migration

Yu-Lin Eda Chang¹, Y. Miyazawa¹, M. Miller², and K. Tsukamoto²
M. Béguer-Pon³, K. Ohashi³, J. Sheng³

1. Application Lab, JAMSTEC, Japan

2. Nihon University, Japan

3. Dalhousie University, Canada

Japanese eel (Anguilla japonica)

- The Japanese eel is listed as endangered on the IUCN red list
- Japan consumes 75-80% of world eel production
- High prices of eel and declining catch that created interests in Europe in the culture of European eel in recent decades

- Spawning area Tsukamoto (1992)
- Eel larvae distribution is likely related to ocean circulation Limitation of observation →Application of model simulation
- > Seaward migration
- Migration swimming strategies
- > Role of ocean current affecting migration or recruitment?

Ocean circulation \rightarrow declining of eel catch?

Reasons for recruitment decline:

Overfishing and habitat loss

For variation:

Ocean-climate change (ENSO, PTO)

Present work proposed that ocean circulation also plays a role

Virtual eel simulation

Release plan

• Release area: 140-143E, 12-15N

• Release time: May-July, every 5 days

• Study period: 1993-2013

• Tracking: 240 days

• Tracking scheme:

3D particle tracking with 4th Order Runge-Kutta method

(Ohashi & Sheng, 2015)

• Swimming behaviors:

size dependent based on observation

- horizontal swimming
 - \rightarrow 0.0006×age (m/s)

(0.06 m/s on day 100)

- > diel vertical migration
 - →50m at night
 - \rightarrow 50+0.75×age (m) daytime

(125 m on day 100)

Ocean currents:

JCOPE2 (dx=dy=1/12°)

(Miyazawa et al., 2009)

Visitation frequency (1993-2013)

Visitation frequency in each sub-domain (Unit=20,000 v-larvae)

- Distribution of v-larvae decreases in all regions north of NEC; V-larvae move to south of NEC instead
- → V-larvae tend to move southward in recent years in comparison to early decade.

What had been changed in ocean circulation?

Change of North Equatorial Current (NEC)

In past two decades:

- NEC moves southward and gets weaker, so that westward current at 12-15N becomes weaker
- Subsurface (depth <50m)
 meridional current south of
 14N gets more southward

Therefore:

The weaker westward flow makes v-larvae stay in NEC region longer, so that the southward current, although weak, can effectively brings more v-larvae southward.

Cause of changing ocean circulation: Large scale wind

- Decadal variation is shown in past 60 years.
- The subtropical & tropical WSC and the corresponding Sverdrup transport are weakened in past 2 decades, especially after 2000
- → Weakening of NEC
- → Strengthening of southward subsurface current
- → Weakening of Kuroshio
 Therefore, v-larvae distributed
 towards south, and eel catch in
 east Asia decreased

Fish larvae & mesoscale eddies

Biological:

Rich in nutrients, phytoplankton

- → Food source
- → fish larvae stay for feeding

Physical:

Eddies are nonlinear

- → Trap the material within eddies
- → Fish larvae are trapped passively

Goal: The combined contributions of passive physical trapping and active biological food-attraction of fish larvae to their migration in mesoscale eddies

Idealized experiments based on bio-mpi-POM (Huang & Oey, 2015)

Case	SSHA	Domain & resolution	Eddy	note
Warm	0.1	X=2000km, Y=1000km H=1000m, dx=dy=0.1deg dz=10m (0-300m) 10m-30m (300m-1000m)	D=250km	T and bio parameters specified mean
Cold	-0.1			climatology from STCC region

Release v-larvae:

- → Mean swimming direction is westward (towards East Asia)
- → Swimming speeds are set from 0.01 m/s to 0.06 m/s
- \rightarrow DVM: night at 50m, day at 200m

Example of 3D trajectory in the warm eddy

Distribution of v-larvae on day 0 (black), 100 (red), 200 (blue)

Difference of inner and outer eddy core

Stream function $\varphi : u = \partial \varphi / \partial y$

V-larvae is not the passive particles, the formula is modified to:

$$u=u_{eddy}+u_{eel}=\partial\varphi/\partial y$$

Black: u_{eddy} ; Red: $u_{eddy} + u_{eel}$ (-0.01 m/s) ; Green: $u_{eddy} + u_{eel}$ (-0.06 m/s)

Trapping depends on the two competing terms

- \rightarrow u_{eddy} (closed streamline) & u_{eel} (open streamline)
- \rightarrow V-larvae can escape with the weakening of eddy (u_{eddv})
- \rightarrow Faster swimming v-larvae (u_{eel}) can escape from eddy easier

Biological Food-attraction included

- Japanese eel larvae feeds marine snow -> detritus is used as food indicator
- Food-attraction: meet the food (entering the eddy)->try to stay with the food -> changing swimming direction toward rich food zone

V-larvae distribution with/without food-attraction

- In the cold eddy: more v-larvae are able to stay in the eddy
- In the warm eddy: distributions are similar to physical trapping only

Retention time in eddies

Slow swimming

Physical trapping

Fast swimming

Biological food-attraction

Summary

Impact of ocean circulation on Japanese eel larvae migration are investigated based on a 3D particle-tracking method, in which swimming behavior are considered.

The ocean circulation plays a role in declining Japanese eel catch Changes of wind → change of NEC → less larval transport toward East Asia

Physical and biological roles of eddies in fish larvae migration is investigated.

- The impact of eddies depends on the swimming speed of v-larvae relative to the eddy speed. Slow (fast) swimming v-larvae are accelerated (dragged) by eddies.
- Trapping depends on two competing terms: u_{eddy} & u_{eel}
- Physical trapping dominates the retention of slow-swimming vlarvae, whereas biological food-attraction takes over in fast swimming cases

Reference

- Chang, Y.-L.K., Y. Miyazawa, M. Miller, and K. Tsukamoto, 2018: Potential impact of ocean circulation on the declining Japanese eel catches, Scientific Reports. 2018;8(1):5496. doi:10.1038/s41598-018-23820-6
- Chang, Y.-L.K., Y. Miyazawa, M. Béguer-Pon, Y. Han, K. Ohashi, and J. Sheng, 2018: Physical and biological roles of mesoscale eddies in Japanese eel larvae dispersal in the western North Pacific Ocean, Scientific Reports. 2018;8(1):5013. doi: 10.1038/s41598-018-23392-5
- Chang, Y.-L., Y. Miyazawa, M. Béguer-Pon, 2017: The dynamical impact of mesoscale eddies on migration of Japanese eel larvae, PLoS ONE, 12(3): e0172501. doi: 10.1371/journal.pone.0172501
- Chang, Y.-L., Y. Miyazawa and M. Béguer-Pon, 2016: Simulating the oceanic migration of Japanese silver eels, PLoS ONE, 11(3): e0150187.doi:10.1371/journal.pone.0150187
- Chang, Y.-L., J. Sheng, K. Ohashi, M. Béguer-Pon, and Y. Miyazawa, 2015: Impacts of interannual ocean circulation variability on Japanese eel larval migration in the western North Pacific Ocean, PLoS ONE, 10(12): e0144423. doi:10.1371/journal.pone.0144423