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twice as high as those of the inshore profile at 142°10′E 
(1.6 mg m−3 at 32 m) and the offshore profile at 142°50′E 
(1.9 mg m−3 at 11 m). It is suggested that enhanced turbu-
lence in the lower layer of the front supplied nutrients to 
the subsurface layer.

Mixing around the front may occur not only vertically 
but also horizontally, and also through double diffusion. In 
particular, the disturbances widely observed in the 26.0–
26.6σθ layers (Figs. 2, 3) may enhance effective horizon-
tal and vertical mixing, resulting in modification of water 
masses. It was observed that salinity of the core TWC 
water has a southward decreasing trend (Fig. 3). It is likely 
that the core of the TWC becomes cold, fresh and eutrophic 
due to horizontal and vertical mixing as it flows southward.

The disturbances and mixing around the front may also 
influence the migration of demersal species on the shelf. It is 
known that North Pacific giant octopuses migrate into shal-
low shelf areas off the Sanriku Coast in summer. Since they 
are mainly found in coastal areas of Hokkaido where the 
water is colder, their seasonal southward migration should 
occur first along the southward extension of the cold OY 
water. The disturbances and mixing around the front may 
encourage the North Pacific giant octopus and other cold-
water species to follow the shallow shelf. It is also likely 
that enhanced primary production along the front causes 
aggregations of various demersal and pelagic species.

Although the present study focuses on the front between 
the TWC and the OY, modification of the TWC can also 
impact the inner bays. While there are many bays along the 
Sanriku Coast (Fig. 1b), the southward gradient in water 

properties of the TWC influencing the circulation of the 
bays (e.g., Ishizu et al. 2015; Sakamoto et al. 2015) should 
cause a gradient in biota and productivity in the bays. Inter-
actions between waters of the TWC, the OY and the inner 
bays will be examined in future studies through ongoing 
observations and numerical experiments for this area.
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3.3  Shear and microstructure

The geostrophic velocity shear structure of the TWC and 
the OY was revealed by the UCTD observations (Fig. 6). 
Narrow bands of enhanced negative shear with magnitudes 
exceeding 5 × 10−3 s−1 were observed along the front char-
acterized by sharp horizontal gradients in potential temper-
ature and salinity (Fig. 2). The magnitude of the shear was 
strongest along the OH line where the southward flow of 
the TWC was most prominent (Figs. 4, 5). Strong negative 
shear was also found near the coast on the shelf, especially 
along the OH line. Offshore of the front, the magnitude 
of the geostrophic velocity shear was relatively moderate; 
however, negative values of ~10−3 s−1 were observed along 
the bottom slope on the OH line, corresponding to the slope 
of the isopycnals (Fig. 6c).

Distributions of the signed Rossby number Ro and the 
inverse Richardson number Ri−1 are shown in Fig. 7. The 
values of Ro along the three lines mostly ranged from 
−0.32 (−10−0.5) to 0.32 (100.5), except in coastal areas 
where tidal flows might have substantial contribution to 
the depth-averaged ADCP flow (Fig. 7a–c). Magnitudes 
of Ro were generally high around the front where flows 
of the TWC and the OY were observed, whereas the signs 
changed across the flow. As both of the TWC and the OY 
flowed southward, Ro became negative (positive) due to 
the anticyclonic (cyclonic) relative vorticity in the western 
(eastern) side of the flow axis (Fig. 7a–c, see also Fig. 4): 
negative and positive values of Ro in the inshore flank of 
the front corresponded to the flow of the TWC, and those 
from the front to the offshore flank of the front (nega-
tive values in intermediate and lower layers from 142°15′ 
to 142°30′E and positive values in wide areas east of 
142°30′E) were caused by the flow of the OY.

Distributions of the inverse Richardson Ri−1 indicate 
that the strong negative shear of the geostrophic velocity 
observed along the front of the three lines and on the shelf 
of the OH line was comparable to the buoyancy frequency 
(Fig. 7d–f). The values of Ri−1 ranged from approximately 
0.1–1 along the front, and was mostly O(1) along the OH 
line (Fig. 7c). High Ri−1 was also estimated on the shelf 
for all three lines, again O(1) along the OH line (Fig. 7c), 
and 0.1–0.3 near the bottom slope of the OH line offshore 
of the front. For water columns above the bottom layer 
in the offshore area, Ri−1 was relatively low compared to 
that for the inshore side of the front, with a typical range 
of 0.001–0.01, although slight elevations were observed in 
some parts of water columns west of 142°45′E.

According to Eq. (1), the minimum frequency of inter-
nal waves ωmin is estimated from Ro and Ri−1 (Fig. 8). The 
values of Ro–Ri−1 became negative for wide areas around 
the front along the MY line (Fig. 8a) and for coastal sides 
and lower parts of the front along the TD and OH lines 

(Fig. 8b, c). This caused decreases in ωmin from the inertial 
frequency and, hence, increases in the maximum periods of 
the internal waves to exist, from the inertial period of 18.9 h 
(Fig. 8d–f). The maximum period widely exceeded 20 h in 
the frontal area along the MY line with the maximum values 
above 22 h in a 50–150 m layer (Fig. 8a). Along the TD and 
OH lines, increases in the maximum period did not occur 
widely in the frontal area but markedly high patches were 
observed in the coastal sides and lower pars of the front. It is 
noted that these values exceeded 24 h, suggesting that inter-
nal waves with a diurnal frequency could locally exist.

The vertical shear of ADCP horizontal velocity reflected 
not only the synoptic structure of the TWC and the OY but 
also the smaller-scale disturbances (Fig. 9). Besides the 
bands of negative shear corresponding to the TWC (Fig. 6), 
streaks of strong positive and negative shear were observed 
running upward and downward from the shelf break around 
200 m. Considering that similar streak patterns observed 
around the Kuroshio flowing along a shelf margin were 
attributed to internal waves (Rainville and Pinkel 2004), 
we assumed that these patterns were caused by the propa-
gation of internal waves that were possibly excited at the 
shelf break through interactions between currents (either 
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twice as high as those of the inshore profile at 142°10′E 
(1.6 mg m−3 at 32 m) and the offshore profile at 142°50′E 
(1.9 mg m−3 at 11 m). It is suggested that enhanced turbu-
lence in the lower layer of the front supplied nutrients to 
the subsurface layer.

Mixing around the front may occur not only vertically 
but also horizontally, and also through double diffusion. In 
particular, the disturbances widely observed in the 26.0–
26.6σθ layers (Figs. 2, 3) may enhance effective horizon-
tal and vertical mixing, resulting in modification of water 
masses. It was observed that salinity of the core TWC 
water has a southward decreasing trend (Fig. 3). It is likely 
that the core of the TWC becomes cold, fresh and eutrophic 
due to horizontal and vertical mixing as it flows southward.

The disturbances and mixing around the front may also 
influence the migration of demersal species on the shelf. It is 
known that North Pacific giant octopuses migrate into shal-
low shelf areas off the Sanriku Coast in summer. Since they 
are mainly found in coastal areas of Hokkaido where the 
water is colder, their seasonal southward migration should 
occur first along the southward extension of the cold OY 
water. The disturbances and mixing around the front may 
encourage the North Pacific giant octopus and other cold-
water species to follow the shallow shelf. It is also likely 
that enhanced primary production along the front causes 
aggregations of various demersal and pelagic species.

Although the present study focuses on the front between 
the TWC and the OY, modification of the TWC can also 
impact the inner bays. While there are many bays along the 
Sanriku Coast (Fig. 1b), the southward gradient in water 

properties of the TWC influencing the circulation of the 
bays (e.g., Ishizu et al. 2015; Sakamoto et al. 2015) should 
cause a gradient in biota and productivity in the bays. Inter-
actions between waters of the TWC, the OY and the inner 
bays will be examined in future studies through ongoing 
observations and numerical experiments for this area.
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3.3  Shear and microstructure

The geostrophic velocity shear structure of the TWC and 
the OY was revealed by the UCTD observations (Fig. 6). 
Narrow bands of enhanced negative shear with magnitudes 
exceeding 5 × 10−3 s−1 were observed along the front char-
acterized by sharp horizontal gradients in potential temper-
ature and salinity (Fig. 2). The magnitude of the shear was 
strongest along the OH line where the southward flow of 
the TWC was most prominent (Figs. 4, 5). Strong negative 
shear was also found near the coast on the shelf, especially 
along the OH line. Offshore of the front, the magnitude 
of the geostrophic velocity shear was relatively moderate; 
however, negative values of ~10−3 s−1 were observed along 
the bottom slope on the OH line, corresponding to the slope 
of the isopycnals (Fig. 6c).

Distributions of the signed Rossby number Ro and the 
inverse Richardson number Ri−1 are shown in Fig. 7. The 
values of Ro along the three lines mostly ranged from 
−0.32 (−10−0.5) to 0.32 (100.5), except in coastal areas 
where tidal flows might have substantial contribution to 
the depth-averaged ADCP flow (Fig. 7a–c). Magnitudes 
of Ro were generally high around the front where flows 
of the TWC and the OY were observed, whereas the signs 
changed across the flow. As both of the TWC and the OY 
flowed southward, Ro became negative (positive) due to 
the anticyclonic (cyclonic) relative vorticity in the western 
(eastern) side of the flow axis (Fig. 7a–c, see also Fig. 4): 
negative and positive values of Ro in the inshore flank of 
the front corresponded to the flow of the TWC, and those 
from the front to the offshore flank of the front (nega-
tive values in intermediate and lower layers from 142°15′ 
to 142°30′E and positive values in wide areas east of 
142°30′E) were caused by the flow of the OY.

Distributions of the inverse Richardson Ri−1 indicate 
that the strong negative shear of the geostrophic velocity 
observed along the front of the three lines and on the shelf 
of the OH line was comparable to the buoyancy frequency 
(Fig. 7d–f). The values of Ri−1 ranged from approximately 
0.1–1 along the front, and was mostly O(1) along the OH 
line (Fig. 7c). High Ri−1 was also estimated on the shelf 
for all three lines, again O(1) along the OH line (Fig. 7c), 
and 0.1–0.3 near the bottom slope of the OH line offshore 
of the front. For water columns above the bottom layer 
in the offshore area, Ri−1 was relatively low compared to 
that for the inshore side of the front, with a typical range 
of 0.001–0.01, although slight elevations were observed in 
some parts of water columns west of 142°45′E.

According to Eq. (1), the minimum frequency of inter-
nal waves ωmin is estimated from Ro and Ri−1 (Fig. 8). The 
values of Ro–Ri−1 became negative for wide areas around 
the front along the MY line (Fig. 8a) and for coastal sides 
and lower parts of the front along the TD and OH lines 

(Fig. 8b, c). This caused decreases in ωmin from the inertial 
frequency and, hence, increases in the maximum periods of 
the internal waves to exist, from the inertial period of 18.9 h 
(Fig. 8d–f). The maximum period widely exceeded 20 h in 
the frontal area along the MY line with the maximum values 
above 22 h in a 50–150 m layer (Fig. 8a). Along the TD and 
OH lines, increases in the maximum period did not occur 
widely in the frontal area but markedly high patches were 
observed in the coastal sides and lower pars of the front. It is 
noted that these values exceeded 24 h, suggesting that inter-
nal waves with a diurnal frequency could locally exist.

The vertical shear of ADCP horizontal velocity reflected 
not only the synoptic structure of the TWC and the OY but 
also the smaller-scale disturbances (Fig. 9). Besides the 
bands of negative shear corresponding to the TWC (Fig. 6), 
streaks of strong positive and negative shear were observed 
running upward and downward from the shelf break around 
200 m. Considering that similar streak patterns observed 
around the Kuroshio flowing along a shelf margin were 
attributed to internal waves (Rainville and Pinkel 2004), 
we assumed that these patterns were caused by the propa-
gation of internal waves that were possibly excited at the 
shelf break through interactions between currents (either 
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to their right (left) in the N. (S.) Hemisphere  

Coastal currents in PICES region?
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1. Submesoscale front is developed between Tsushima WC 
and Oyashio from subsurface to the bottom

2. Minimum frequency for IWs is lowered by strong 
vertical shear of geostrophic velocity along the front

3. By trapping IWs within the strong shear band, “Internal 
Tide Chimney” mechanism intensify vertical mixing along 
the front, which may be responsible for high 
productivity in this area even during summer

Itoh et al (2016, Journal of Oceanography, 72(1)  
= Special section: Oceanographic observations after the 
2011 earthquake off the Pacific coast of Tohoku) 
https://rdcu.be/96fB
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ADCP Shear & characteristics of M2 IWs 
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