

Copepod community growth rates in relation to body size, temperature, and food availability in the East China Sea:

A test of Metabolic Theory

Kuan-Yu Lin, Akash Sastri, Gwo-Ching Gong, and Chih-hao Hsieh

Essential factors influencing growth rates?

- Body size (M)
 Temperature (T)

 Body size (M) $g \propto M^{-0.25}e^{-E/kT}$
 - Metabolic Theory of Ecology (Brown et al. 2004)
 - Pebated both on size-scaling (-0.25?) and temperature-coefficient (E?)

g: weight-specific growth rate (day⁻¹)

M: body weight (µg) T: temperature (K)

E : activation energy (eV)

k: Boltzmann's constant (8.62 × 10⁻⁵ eV/K)

Additional factors influencing growth rates?

- Food availability
 - Important determinant (Mullin and Brook 1970)

- Still other possibilities
 - Life history (e.g. Hirst and Bunker 2003)
 - Spawning types in copepods

Hypothesis

 The variation of copepod community growth rate is explained by the relationship predicted by Metabolic Theory

$$g \propto M^{-0.25}e^{-E/kT}$$

- Additional examination
 - Differences among development stages and spawning types
 - Condition of food limitation

Sampling

- Sites: the East China Sea
 - Few studies measured in situ copepod growth rate
 - Oceanic environment is variable spatially and temporally (e.g. Gong et al. 2003)
- Sites: Kuroshio region

Sampling

- Environmental data from CTD and Go-Flo bottle
 - Temperature
 - Salinity
 - Chlorophyll a concentration (a proxy of food)

- Copepods from plankton nets
 - Shipboard incubation for growth rate measurement
 - Food source: 50μm-screened seawater from Go-Flo bottles
 - Artificial Cohort method (Kimmerer and McKinnon 1987)
 - Restricted size ranges mimicking natural cohort

Incubation

Artificial Cohort (50-80 μm as example)

Enumeration

carbon weight $(M) = K \times length \times width^2$

Multiple-peak consideration for representative carbon weight M_T or M_0

weight-specific growth rate = $\ln(M_T/M_0)/T$

Two size fractions:

- 50-80 μ m , for nauplii , T=1 day
- 100-150 μ m , for copepodites , T=2 days

Example

 $ln(0.064/0.044) / 1 = 0.39 (day^{-1})$

 $ln(0.244/0.207) / 2 = 0.08 (day^{-1})$

Estimates of growth rate

100-150 μm:

c_c Calanoid

c_o Oithonid

c_h Harpacticoid

c_r Corycaeid

c_n Oncaeid

c_cn Calanoid

nauplii

c_on Cyclopoid

nauplii

50-80 μm:

n_c Calanoid

n_o Cyclopoid

n_h Harpacticoid

Seasonal variation

100-150 μm:

c_c Calanoid

c_o Oithonid

c_h Harpacticoid

c_r Corycaeid

c_n Oncaeid

c_cn Calanoid

nauplii

c_on Cyclopoid

nauplii

50-80 μm:

n_c Calanoid

n_o Cyclopoid

n_h Harpacticoid

Spring

Summer

+ Winter

Classification of Spatial groups

K-means cluster

Spatial variation

100-150 μm:

c_c Calanoid

c_o Oithonid

c_h Harpacticoid

c_r Corycaeid

c_n Oncaeid

c_cn Calanoid

nauplii

c_on Cyclopoid

nauplii

50-80 μm:

n_c Calanoid

n_o Cyclopoid

n_h Harpacticoid

High S, Low Chl

+ High S, High Chl

Low S, Low Chl

△ Low S, High Chl

Test of Metabolic Theory

- Different groups for testing the MTE
 - All data as a whole
 - Two size fractions
 - 50-80 μm
 - 100-150 μm
 - Two spawning types
 - Broadcaster (all calanoid)
 - Sac-spawner (all cyclopoid, harpacticoid)

Test of Metabolic Theory

- Exclusion of possible "food-limited" growth
 - Fit Michaelis-Menton model $g = V_{max}[Chl]/(K_m + [Chl])$
 - Eliminate growth where $[Chl] < 2 \times K_m$

Test of Metabolic Theory

•
$$\ln(g) = a_0 + (-E/k)T^{-1} + a_1\ln(M)$$

	a_0	E	a_1	r ²	p
50-80 μm	9.70 (±10.24)	0.35 (±0.26)	-0.70 (±0.37)	0.13	0.08
100-150 μm	33.19 (±13.62)	0.94 (±0.35)	-0.54 (±0.52)	0.25	0.02
Broadcaster	4.00 (±13.63)	0.16 (±0.35)	-0.38 (±0.19)	0.16	0.12
Sac-spawner	27.23 (± 8.61)	0.80 (±0.22)	-0.70 (±0.15)	0.51	<0.01
All	22.11 (± 8.73)	0.66 (±0.22)	-0.66 (±0.12)	0.41	<0.01
Expectation		0.6-0.7	-0.25		

Test of Metabolic Theory – Temperature

•
$$\ln(g) = a_0 + (-E/k)T^{-1} + a_1\ln(M)$$

Test of Metabolic Theory – Temperature

- Reasonably consistent with MTE prediction, when considering all data.
- Smaller coefficient in smaller (50-80 μm) size fraction
 - Also found in other study (De Castro and Gaedke 2008)

•
$$\ln(g) = a_0 + (-E/k)T^{-1} + a_1 \ln(M)$$

Caveat: Overall size range?

- Our size range: $\sim 10^{1.36}$ -fold
- → But, explaining ~49% variance
 - → high dependence of body size.
 - ??But, why coefficient/scaling not as prediction?

(Tilman et al, 2012)

- Possible reasons for deviation: Regression method
 - Ordinary least square (OLS)
 - Major axis (MA)
 - Standardized/Reduced major axis (SMA/RMA)
 - Comparative models applied to relationship between "temperature-corrected growth rate" and "body size"

- $\bullet \quad g' = a_0 + a_1 \ln(M)$
 - = g': temperature-corrected growth rate

- $g' = a_0 + a_1 \ln(M)$
 - = g': temperature-corrected growth rate

- Possible reasons for deviation: Regression method
- Possible reasons for deviation: Phylogenetic effect
 - Differences in normalized constant (a_0) and/or slope (a_1) among groups
 - Emphasized in previous studies (e.g. Ives and Zhu 2006)

 Still in lack of analytic methods incorporating both phylogenetic correction and major axis regression

- Smaller coefficient in smaller (50-80 μm) size fraction
 - Such difference also described by others (Hopcroft et al. 1998)
 - Opposite to WBE model (West et al. 1997) prediction

- Smaller coefficient in sac-spawner group
 - Controversial observation among studies
 - Supported by Hopcroft et al. 1998
 - Opposed to Hirst and Bunker 2003
 - Opposite to cost-of-transport hypothesis (Seibel 2007)

Test addition effects of food availability

- Y: residuals of $\ln(g) = a_0 + (-E/k)T^{-1} + a_1\ln(M)$
- X: chlorophyll a concentration

Test of Metabolic Theory - Food availability

Alternative models

$$\longrightarrow$$
 Model1: $G = a_0 \times M^{a_1}$

Model2 :
$$G = a_0 \times M^{a_1} \times [Chl]$$

Model3:
$$G = a_0 \times M^{a_1} \times \frac{[Chl]}{a_2 + [Chl]}$$

Model4:
$$G = a_0 \times M^{a_1} \times \frac{e^{[Chl]}}{a_2 + e^{[Chl]}}$$

G: temperature-corrected weight-specific growth rate (day⁻¹) [Chl]: chlorophyll a concentration (mg/l)

Test of Metabolic Theory – Food availability

Alternative models

$$\longrightarrow$$
 Model1: $G = a_0 \times M^{a_1}$

$$\longrightarrow$$
 Model2 : $G = a_0 \times M^{a_1} \times [Chl]$

Model3:
$$G = a_0 \times M^{a_1} \times \frac{[Chl]}{a_2 + [Chl]}$$

Model4:
$$G = a_0 \times M^{a_1} \times \frac{e^{[Chl]}}{a_2 + e^{[Chl]}}$$

$$AIC = -135.7$$

Test of Metabolic Theory – Food availability

Alternative models

Model1:
$$G = a_0 \times M^{a_1}$$

$$\longrightarrow$$
 Model2 : $G = a_0 \times M^{a_1} \times [Chl]$

Model Model
$$G = a_0 \times M^{a_1} \times \frac{[Chl]}{a_2 + [Chl]}$$

Model4:
$$G = a_0 \times M^{a_1} \times \frac{e^{[Chl]}}{a_2 + e^{[Chl]}}$$

$$AIC = -152.9$$

Test of Metabolic Theory – Food availability

- Other mechanisms not discussed here
 - Food preference
 - Non-phytoplankton food
 - Algal toxin (e.g. Paffenhöfer 2002)
 - Elemental composition, e.g. N:C ratio (Touratier et al. 1999)

Taxa of copepods	Food sources	References
· ·	Heterogeneous protozoan (over phytoplankton)	Turner 2004 and references therein
Calanus spp., nauplii		
Oithonidae	Nauplii, protozooplankton	Turner 2004
Oithona davisae	Flagellate (over diatoms)	Uye (1994)
Oithona similis	Pellet of zooplankton	Gonzalez and Smetacek 1994
Limnoithona tetraspina	Moving prey	Gould and Kimmerer 2010
Corycaeus spp.	Nauplii	Turner et al. (1984), Landry et al. 1985
Oncaeidae	Flagellate	Turner 2004
Oncaea mediterrenea	Marine snow	Alldredge 1972, Ohtsuka and Kubo 1991
Pseudocalanus acuspes	Ciliate, flagellate, heterogenous particles, sinking particles	Peters et al. 2006, Renz and Hirche 2006
Calanus pacificus	Bacteria (~30% assimilation efficiency)	Lawrence et al. 1993
Various taxa	Bacteria, ciliates, dinoflagellates, coccolithophores, cannibalism	Mauchline 1998 and references therein

Summary

$$g \propto M^{-0.25} e^{-E/kT}$$

Summary

$$g \propto M^{-1/2}e^{-E/kT}$$

Summary

$$g \propto M^{-\frac{?}{2}} e^{-E/kT} \times \frac{[Chl]}{a + [Chl]}$$

Comparison with other empirical model predictions

