An investigation of the biophysical oceanography in coastal waters of north-western Australia and photophysiological response of phytoplankton to tidal mixing.

James McLaughlin, Jim Greenwood, Martin Lourey, Christine Hanson, Nagur Cherukuru, Peter Thompson, Paul Branson & Charitha Pattiaratchi

OCEANS & ATMOSPHERE

www.csiro.au

Voyage SS2010_v03

Ocean surface chlorophyll-a from MODIS

Light climate and suspended particulate matter

Turbidity is fairly high in King Sound

Sound

Primary Production: Photosynthesis vs. Irradiance

¹⁴Carbon uptake method

7 light levels ranging from 0 to 750 $\mu E \ m^{-2} \ s^{-1}$

Phytoplankton Production

Phytoplankton community

King Sound

 Community dominated by fucoxanthin = Diatoms – Large Cells

Neo

Allo

■ But-fuco

Diadino

carotene mix

Hex-fuco

Viola

Lut

Pras

Zea

Offshore

Transitions to Smaller Cells

Zeaxanthin = Synechococcus

Production Comparisons

How does King Sound and the Kimberley Coast compare to other regions in Western Australia?

Kimberley	PP (mg C m ⁻² d ⁻¹)	Other Regions	PP (mg C m ⁻² d ⁻¹)
King Sound	420 - 1690	Ningaloo/Capes Currents	840 - 1310
50m	220 - 560	Leeuwin Current	110 - 530
200m	130 - 300		
1000m	45 - 80		

Data from Hanson et al 2005 same method used!

Summary – Part 1

- 1. Light extinction is quite high inshore and decreases at the shelf edge.
- 2. Nutrient standing stocks inshore are low, at 200m there is a band of nutrients possibly supplied by tidal pumping action
- 3. The phytoplankton community shifts from large cells inshore to small cells offshore and on the shelf there is a distinct deep chlorophyll maximum (~70 m)
- 4. Production rates very high in King Sound (despite low nutrients and turbidity) decreasing offshore

Continental Shelf Research 173 (2019) 1-12

Contents lists available at ScienceDirect

Continental Shelf Research

journal homepage: www.elsevier.com/locate/csr

Biophysical oceanography of tidally-extreme waters of the southern Kimberley coast, Western Australia

M.J. McLaughlin^{a,b,*}, M.J. Lourey^c, C.E. Hanson^d, N. Cherukuru^e, P.A. Thompson^f, C.B. Pattiaratchib

^a CSIRO Oceans and Atmosphere, Indian Ocean Marine Research Centre, M097 64 Fairway, Crawley, Western Australia 6009, Australia

b University of Western Australia, Oceans Institute, Indian Ocean Marine Research Centre, M470 35 Stirling Highway, Crawley, Western Australia 6009, Australia

^c BMT Western Australia, 4/20 Parkland Rd, Osborne Park, Western Australia 6017, Australia

^d Department of Education WA, 151 Royal Street, East Perth, Western Australia 6004, Australia

^e CSIRO Oceans and Atmosphere, GPO Box 1600, Canberra, Australian Capital Territory 2601, Australia

^f CSIRO Oceans and Atmosphere, PO Box 1538, Hobart, Tasmania 7001, Australia

Phytoplankton Production

"What is going on here!" - Worth a closer look

Photophysiology

King Sound

- Cyclical changes in light intensity near the mouth
- High P_{max} near the mouth of KS
- No photoinhibition (β)

Upstream

- Average light conditions
- No depth variation
- Lower P_{max}

Euphotic Zone and Mixed Layer Depth

Euphotic Zone & MLD – King Sound

Vertical profiles of $\sigma\theta$, and PAR show at KS stations:

- A lack of any significant vertical gradient in water density or chl-a concentration
- 2. PAR versus depth suggests differences in water clarity on different phases of the tidal cycle between the sites
- Steeper slopes of PAR on the spring tide indicates light attenuation is higher

Summary – Part 2

- King Sound is well mixed, turbid, dominated by surface production with high production rates similar to upwelling systems on the WA coast
- 2. The photic zone is shallower than the mixed layer depth.
- 3. The whole of water column is mixed due to macro-tides
- 4. Phytoplankton are adapted to maximize photosynthesis under variable light conditions.

Thank You

Oceans & Atmosphere
James McLaughlin
Team Leader | Coastal
Vegetation and Sediment

t +61 8 9333 6523m +61 439181475e james.mclaughlin@csiro.au

