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0ss of fourism, recreation and transportation functionality
increased risk of loss of life

(Nicholls et al.2007).

@ In addition fo the input from the increasing global frend (e.g.
IPCC reports), extreme sea level events are also influenced by
the El Nino/Southern Oscillation(ENSQO), the Indian Ocean Dipole

(IOD), and so on (Lombard et al. 2005).

Skillful seasonal-interannual forecast is necessary to reduce the risks!
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Key questions to seasonal prediction of sea level anomalies

@ Is it possible beyond 7-month lead time?

@ Should it be considered as a new type of information beyond the
common climate prediction information such as sea surface
temperafure?

@ Are there any new potential sources of its predictability excluding
ENSO impacts?



Schematic of numerical seasonal prediction:
"baton pass”



Schematic of numerical seasonal prediction:
"baton pass”




Schematic of numerical seasonal prediction:
"baton pass”

7 SRS S wE askso i e

v - “Ovbservaﬂ O S R Q‘
.\ {-'or the current sfa’r‘f




Schematic of numerical seasonal prediction:
"baton pass”

(1. “ObSer\jafio
\ for the current state /

~%

2. Initialization X(to) + AtxM=X(t, + At)
(assimilation)




Schematic of numerical seasonal prediction:
"baton pass”

AT N e S P b S .

1. "Observation” ,
\_for the current state /

~_by a model

X(ty) + AtxXM =X(t, + At)

2. Initialization

(assimilation)




Schematic of numerical seasonal prediction:
"baton pass”

AT N e S P b S .

1. "Observation” ,
\_for the current state /

~_by a model

Prediction of future

X(ty) + AtxXM =X(t, + At)

2. Initialization

(assimilation)




Schematic of numerical seasonal prediction:
"baton pass”

P wE RS TR o

(1.“Observation”
\ for the current state /

~_by a model

Prediction of future

2. Initialization X(to) + AtxM = X(to + At)
(assimilation)

Satellites are helpful for
globally, continuously
monitoring.

L/
%,

s,
%



Schematic of numerical seasonal prediction:
"baton pass”

2 EERIRT I R AL wE RO e

' “O“bsler\;a...io’ ‘
\ for the current state /

/by a model

<%

Prediction of future

X(ty) -+ AtxM = X(t, + At)

2. Initialization
(assimilation)

Calcula’re partial differential eq.

Use gl"idS of "cell” ; - Atmospher
for the Earth

. Wind Wind
Terrestrial ;
Radiation '

Solar Radiation

Satellites are helpful for
globally, continuously
monitoring.

7 gi)nvection
Convection > . o
Cloud # 0u 10P 2 .
3t = 5ox + fv + vV4u * Precipitaion
Snow ‘ Evaporation

Wmd Stress

= —v VT +kV?T at Strage




The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005)
(developed at JAMSTEC under the EU-Japan collaboration)



The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005)
(developed at JAMSTEC under the EU-Japan collaboration)

I
AGCM OGCM Coupling 25000
cover
OPAS8.2 Every 2 hour restoring
ECHAM4 .6 it :
SINTEX-F1 T106L19 2%(0.672) L31 No flux correction . obs.
climatology




The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005)
(developed at JAMSTEC under the EU-Japan collaboration)

I
AGCM OGCM Coupling 25000
cover
OPAS8.2 Every 2 hour restoring
ECHAMA4.6 1 :
SINTEX-F1 T106L19 2%(0.672) L31 No flux correction . obs.
climatology

Initialization: SST-nudging scheme
9 ensemble members
{3 nudging strengths X 3 physical schemes (wind-ocean current);



The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005)
(developed at JAMSTEC under the EU-Japan collaboration)

I
AGCM OGCM Coupling 25000
cover
OPAS8.2 Every 2 hour restoring
ECHAMA4.6 1 :
SINTEX-F1 T106L19 2%(0.672) L31 No flux correction . obs.
climatology

Initialization: SST-nudging scheme
9 ensemble members
{3 nudging strengths X 3 physical schemes (wind-ocean current);

The SINTEX-F1 system is very skillful at predicting ENSO (Luo et al. 2005; 2008; 2017,
etc) and IOD events (Luo et al. 2007; Luo et al 2008, GRL).



The SINTEX-F1 numerical/dynamical seasonal prediction system (Luo et al. 2005)
(developed at JAMSTEC under the EU-Japan collaboration)

I
AGCM OGCM Coupling 25000
cover
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climatology

Initialization: SST-nudging scheme
9 ensemble members
{3 nudging strengths X 3 physical schemes (wind-ocean current);

The SINTEX-F1 system is very skillful at predicting ENSO (Luo et al. 2005; 2008; 2017,
etc) and IOD events (Luo et al. 2007; Luo et al 2008, GRL).

Real-time prediction has been provided via our website
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Skill assessment is

@ Based on anomaly correlation coefficient (ACC) between obs. and re-forecast output.
@ Re-forecast period: issued of the first date of every month in years 1993-2010

@9 Reference data: AVISO+ data in 1993-2010

2 Monthly climatology in 1993-2009

@ Anomaly (deviation from monthly climatology) is linearly detrended
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A3. At least, the Indian Ocean Dipole.

Q4. Further research are required to understand why the regional SSH prediction in
the North Pacific (30-40N, 180W-160W) is skillful?

Some preliminary analysis
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Regional anomaly (in 30-40N, 180W-160W) plumes from JJA1999 to MAM2001
(prediction issued on June 1, 1999)
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Q4. Further research are required fo understand why the regional SSH prediction in
the North Pacific (30-40N, 180W-160W) is skillful?

A4. Dynamical process associated with wind-driven downwelling may play some roles
on the fact that the positive SSH anomaly observed in June 1999 persisted fo
SON2000, and partly recovered to DJF2000/01



Q4. Further research are required fo understand why the regional SSH prediction in
the North Pacific (30-40N, 180W-160W) is skillful?

A4. Dynamical process associated with wind-driven downwelling may play some roles
on the fact that the positive SSH anomaly observed in June 1999 persisted fo
SON2000, and partly recovered to DJF2000/01

Further research are required fo understand the processes...
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Another research direction:

"How to improve the prediction skill”

Introduce new prediction system (SINTEX-F2)
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Schematic of numerical seasonal prediction:
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/1. “*Observation” ‘
\_for the current state /
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Prediction of future

2. Initialization = X(to + At)
(assimilation)

Two strategies are possible for improving the prediction sKill:
#1 model development and #2 ocean initialization

Relative Reduction in 55T Forecast Error
ECMWF Seasonal Forecasting Systems

Which step iIs more critical?

Some previous works (e.g.
ECMWEF system) suggest that
#1 model development and #2
ocean initialization are equally
important for improving
seasonal prediction skill.
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Strategy 1: Model development (Doi et al. 2016, JAMES)
From SINTEX-F1 to SINTEX-F2 (high-res. & sea ice)

Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

From SST-nudging to
three dimensional variational scheme (3DVAR)
using 3D profile data of Temperature and Salinity



Strategy 1: Model development (Doi et al. 2016, JAMES)

AGCM OGCM Coupling Sea Ice
SINTEX-F1 ECHAM4 OPAS Every 2 hour restoring obs.
(Luo et al. 2005) T106L19 2%(0.5-2) L31 | No flux correction climatology
SINTEX-F2 ECHAMS NEMO(OPA9) Cafie e Fl T
(M t al. 2012;
Sasaki et al. 2013 ) T106L 31 et

2 Initialization: SST-nudging scheme

2 12 ensemble members

{2 sst data (12weekly, 0252daily) X 3 nudging strengths

X 2 physical schemes for SVS ocean mixing (Sasaki et al. 2012)}

"A high-resolution with a dynamical sea-ice model” may
improve the coastal climate phenomena and the mid, high-latitude climate.
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Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

The initialization skill of subsurface ocean
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Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

The initialization skill of subsurface ocean

ACC for D20A in May in 1983-2015
a SST-nudging vs EN4
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Initial state of subsurface ocean in the tropical Indian Ocean and
the tropical Atlantic, and the mid-latitude is closer to the
observation by the new initialization scheme.



ACC of SSH prediction from June 1st
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ACC of SSH prediction from June 1st
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Prediction of SSH anom. in DJF2000/01 issued on June 1, 2000(1x10-T cm) Before ARGO
(a) AVISO (b) F1
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Prediction of SSH anom. in DJF2004/05 issued on June 1, 2004(1x10-T cm) After ARGO
(a) AVISO (b) F1
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The newly developed seasonal prediction system
"SINTEX-F2"

F2-3DVAR system is, relative to F1 and F2 systems,
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The newly developed seasonal prediction system
"SINTEX-F2"

F2-3DVAR system is, relative to F1 and F2 systems,
better at predicting SSH in some regions of the North Pacific, the Pacific warm
pool region, and El Nino region.

however, is not always better (depend on regions and cases).

In 2000/01DJF, SSH prediction in some region of the North Pacific is improved
mainly due fo the model development (high-resolution?)

In 2004/05DJF, SSH prediction in the Pacific warm pool region, northeastern

tropical Pacific, and Kuroshio region is improved mainly due to assimilation of
ocean subsurface observation (Note: Argo data is available after 2004)

Further research are required to understand the processes...
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Toward ocean service for stakeholders...

@ We are now providing quasi real-fime seasonal prediction
information of SSH every month by the SINTEX-F1 system.

@ We are now preparing to provide quasi real-time seasonal
prediction information of SSH by the SINTEX-F2-3DVAR system up
to 24 month lead.

@ We hope that those information is helpful for prediction beyond
ocean physical variables (e.g. chl-&)







