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dynamical coupled ocean–atmosphere model to the prediction of 
seasonal sea level anomalies globally for up to 7 months in advance

The skill is derived from the ability to predict ENSO accurately, 
and is in the oceanic Kelvin, Rossby, coastally-trapped waveguides 
extending from the Pacific equatorial region (McIntosh et al. 2015).

El Niño/Southern Oscillation (ENSO) 
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Is it possible beyond 7-month lead time?

Should it be considered as a new type of information beyond the 
common climate prediction information such as sea surface 
temperature?

Are there any new potential sources of its predictability excluding 
ENSO impacts?
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Satellites are helpful for 
globally, continuously 

monitoring.

Use grids of “cell”  
for the Earth 
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Based on anomaly correlation coefficient (ACC) between obs. and re-forecast output. 
Re-forecast period: issued of the first date of every month in years 1993-2010 
Reference data: AVISO+ data in 1993-2010 

Monthly climatology in 1993-2009 
Anomaly (deviation from monthly climatology) is linearly detrended

Skill assessment is







Maskout for low skill of SSH  (ACC<0.5)  
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Some preliminary analysis
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Time series of DJF_SSTA averaged in the box (ºC)
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Successful prediction of positive SSH anomaly in 2000/01DJF 
issued on June 1, 1999, may be the key.



Regional anomaly (in 30-40N, 180W-160W) plumes from JJA1999 to MAM2001 
(prediction issued on June 1, 1999) 
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The positive anomaly persisted to SON2000,  
and recovered to DJF2000/01

The positive anomaly disappeared in SON2000  



SSH anom. (1×10‒1 cm) SST anon (ºC)

Obs. Obs.
Prediction issued on 
June 1, 1999

Prediction issued on 
June 1, 1999

recovered? recovered?



Ekman upwelling anom. (1×10‒6 m/s) Net heat flux anon (W m‒2)
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Reanalysis
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Q4. Further research are required to understand why the regional SSH prediction in 
the North Pacific (30-40N, 180W-160W) is skillful?

A4. Dynamical process associated with wind-driven downwelling may play some roles 
on the fact that the positive SSH anomaly observed in June 1999 persisted to 
SON2000, and partly recovered to DJF2000/01

Further research are  required  to understand the processes…
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Introduce new prediction system (SINTEX-F2)
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Figure 3.1.Progress in the seasonal forecast skill of the ECMWF operational system since it 
became operational around 1996. The yellow bar shows the relative reduction in mean absolute 
error of forecast of SST in the eastern Pacific (NINO3) integrated over the 1-6 months lead time.  
Contribution from model development (blue bar) and ocean initialization (red bar) are equally 
important. Developments in ocean and atmosphere models also contribute to the ocean 
initialization. 
 
Seasonal forecasts use lower resolution models that those in NWP, mainly because the length  of 

the integration, the number of ensemble members and the need for calibration adds to the 

computational cost. The atmospheric model has a typical resolution of 0.5-1 degree in the 

horizontal, with 60 to 90 vertical levels. The ocean resolution is typically 1 degree (with 

equatorial refinement), although in the latest MetOffice seasonal forecasting system the ocean 

resolution is of 0.25 (at expense of reducing the reforecast data set). The forecast lead time is 

typically 6-7 months, sometimes is extended up to 12 months. The real time forecasts requires 

about 40-50 ensemble members. The calibration reforecasts span a period of approximately 30 

years, with hindcasts initialized every month using a reduced ensemble (~11-15 members). In 

total, about 200 years-worth of coupled model integration years are needed for a seasonal 

forecast at 7 months lead time initialized from a single calendar month. Or in other words, 2400 

years-worth of coupled integrations are needed for seasonal forecasts initialized each month.   
 
Seasonal forecasts use both the NRT data stream for initialization of real time, and the BRT data 

stream in the reanalyses needed for the calibration data set. BRT data is also used for 

verification. 

3.1 Ocean Initialization  
The simplest way of providing initial conditions is to run an ocean model forced with observed 

winds and fresh-water fluxes from atmospheric reanalyses and with a strong constraint to 

[Balmaseda et al. 2015]
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Seasonal forecasts use both the NRT data stream for initialization of real time, and the BRT data 

stream in the reanalyses needed for the calibration data set. BRT data is also used for 

verification. 

3.1 Ocean Initialization  
The simplest way of providing initial conditions is to run an ocean model forced with observed 

winds and fresh-water fluxes from atmospheric reanalyses and with a strong constraint to 

[Balmaseda et al. 2015]

Some previous works (e.g. 
ECMWF system) suggest that 
#1 model development and #2 
ocean initialization are equally 
important for improving 
seasonal prediction skill. 
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From SINTEX-F1 to SINTEX-F2 (high-res. & sea ice)

Strategy 2: Ocean Initialization (Doi et al. 2017, JC)
From SST-nudging to  
three dimensional variational scheme (3DVAR)  
using 3D profile data of Temperature and Salinity
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Strategy 1: Model development (Doi et al. 2016, JAMES)

AGCM OGCM Coupling Sea Ice

SINTEX-F1 
(Luo et al. 2005)

ECHAM4 
T106L19

OPA8 
2×(0.5-2) L31 

Every 2 hour 
No flux correction 

restoring obs. 
climatology 

SINTEX-F2 
(Masson et al. 2012; 
Sasaki et al. 2013 ) 

ECHAM5 
T106L31

NEMO(OPA9) 
0.5×0.5 L31 

Same as F1 LIM2

“A high-resolution with a dynamical sea-ice model” may 
 improve the coastal climate phenomena and the mid, high-latitude climate.

 Initialization: SST-nudging scheme     
 12 ensemble members  

   {2 sst data (1ºweekly, 025ºdaily) × 3 nudging strengths  
    × 2 physical schemes for SVS ocean mixing (Sasaki et al. 2012)} 
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The initialization skill of subsurface ocean
Strategy 2: Ocean Initialization (Doi et al. 2017, JC)

Initial state of subsurface ocean in the tropical Indian Ocean and 
the tropical Atlantic, and the mid-latitude is closer to the 
observation by the new initialization scheme.

+ Subsurface T & S 
Initialization of SST  
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Prediction of SSH anom. in DJF2000/01 issued on June 1, 2000(1×10‒1 cm) Before ARGO



After ARGOPrediction of SSH anom. in DJF2004/05 issued on June 1, 2004(1×10‒1 cm)
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F2-3DVAR system is, relative to F1 and F2 systems,
better at predicting SSH in some regions of the North Pacific, the Pacific warm 

pool region, and El Niño region.

however, is not always better (depend on regions and cases).

In 2000/01DJF, SSH prediction in some region of the North Pacific is improved 
mainly due to the model development (high-resolution?)

In 2004/05DJF,  SSH prediction in the Pacific warm pool region, northeastern 
tropical Pacific, and Kuroshio region is improved mainly due to assimilation of 
ocean subsurface observation (Note: Argo data is available after 2004)

Further research are  required  to understand the processes…
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We are now providing quasi real-time seasonal prediction 
information of SSH every month by the SINTEX-F1 system.

We are now preparing to provide quasi real-time seasonal 
prediction information of SSH by the SINTEX-F2-3DVAR system up 
to 24 month lead.

We hope that those information is helpful for prediction beyond 
ocean physical variables (e.g. chl-α)

Toward ocean service for stakeholders…
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