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Global Context
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Fig. 2. Regime shift from kelp forests to seaweed turfs after the 2011 marine heat wave. Kelp

Wernberg et al. 2016 Science

suoledIuUNWIWOo) ainyeN ‘(8T0z) Jenaoxne pue Jaydl|aoi

LT T T T
1.2 2 28 36 4.4 5.2 6 6.8 30 —
Sea surface temperature anomaly (°C) : 1982-2011 b
= 57 snnn % total
_ s 20}
A number of major events have occurred in recent years 2
= By 125%
Each event brings significant impacts, e.qg., £ 10} ff;’:
- Important for determining marine ecosystem structure (2011 WA event) di Wiy
. . . . 0 === . _ _. 1 | | 1 1 %
— Can impact fisheries (2012 NW Atlantic event) lan W May i sep How

. ; . . . . Mills et al. 2013 O h
Some indications that impacts of MHWs are becoming more severe in the context of —— e

warming climate, and that events are more frequent

How to define MHWs? Physical drivers and processes? Global trends in MHWs? Role of climate change?



Marine Heatwave Definition

A marine heatwave (MHW) definition has been proposed (Hobday et al., 2016)

« A MHW is defined to be a discrete prolonged anomalously warm water event at a particular location

- ‘'anomalously warm’: MHW temperatures are above a baseline 90" percentile climatology

- ‘prolonged’: a MHW must persist for at least 5 days

- ‘discrete’: a MHW event has well-defined start and end times
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Hobday et al. (2016). A hierarchical approach to defining marine heatwaves. Prog. Ocean. 141: 227-238.

Definition includes a set of metrics,
including:

- Intensity [°C]
* Maximum SST anomaly
- Duration [days]
* Time from start to end dates

Software implementations available:

Python: github.com/ecjoliver/marineHeatWaves
R: robwschlegel.github.io/heatwaveR/
MATLAB: github.com/ZijieZhao/m mhwl.0




Marine Heatwave Categories

Category IV

Category lll

* | (Moderate) and Il (Strong) events tend to have little to no lasting " \
impacts, while Ill (Severe) and IV (Extreme) events have had ' T Moderete
significant published effects “\\

A marine heatwave (MHW) categorisation has also been proposed
(Hobday et al., 2018)
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What drives marine heatwaves?

Temporal and spatial scales, and drivers
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Holbrook et al. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications. 10:2624
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What drives marine heatwaves?

Physical processes
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The role of climate modes

Percentage change in MHW days during positive phase of climate modes

Holbrook et al. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications. 10:2624



Mean, multi-decadal change, and globally-averaged time series based on satellite SSTs

’/ \ \ (NOAA OI SST, 1982-2016)
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Global Centennial Trends

* Annual MHW metrics have been calculated globally from daily satellite
and Five long-term monthly datasets

(A) MHW Frequency 1987-2016 minus 1925-1954
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Changes between 1925-1954 and 1987-2016:

(D) Globally-averaged MHW duration
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Frequency: +0.78 annual events (p<0.01)

— 34% increase

Duration: +1.8 days (p<0.01)

- 17% incease

Combined! —» +14 annual MHW days (p<0.01)

— 54% increase

Oliver et al. (2018) Longer and more frequent marine heatwaves over the past century. Nature Communications. 9, 1324



Mean or variability?

* |sit the mean warming or the change in SST variability that drives MHW trends?

(A) Change in mean SST (A) Linear trend in mean SST
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Mean or variability?

Can test it using a statistical model.

An autoregressive (AR1) model was Ffit to each location to
know how the SST typically varies there:

T(t + At) = aT(t) + €(t)

Then the SST was simulated many times with a range of
trends in mean SST and SST variance

If the observed trends fall within a confidence interval, the
the trend in mean and/or variance alone can explain them
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Future projections

IPCC AR5 projects that the global ocean will
continue to warm during the 21** century

- Warming in the top hundred metres projected
to be 0.6°C (RCP2.6) to 2.0°C (RCP8.5)

Annual mean ocean surface
change (RCP4.5: 2016-2035)
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We can expect historical trends in
marine heatwaves to continue into
the Future

Will they accelerate?

What will be the impacts on marine
ecosystems and Fisheries?




Future projections

* Six CMIP5 models” were available with daily SSTs

* Calculated MHWs form the historicalNat (1850-2005), historical (1850-2005), RCP4.5 (2006-2100) and RCP8.5 (2006-2100) simulations

 Referenced relative to 1982-2005 base period from historical simulation

(A) Maximum intensity (historical 1982-2005) (D) Total Annual MHW Days (historical 1982-2005)
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Difference between RCPs

Both RCP4.5 and RCP8.5 lead to >300 MHWSs days (global average) by late 21 century

However, distribution of MHW categories differs greatly

Four categories of MHWs, increasing in intensity RCPA4.5: still mostly moderate or strong events RCP8.5 mostly extreme!!!
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Difference between RCPs

Both RCP4.5 and RCP8.5 lead to >300 MHWSs days (global average) by late 21 century

However, distribution of MHW categories differs greatly

Four categories of MHWs, increasing in intensity

Category Il

Hobday et al. (2018), Categorizing and Naming Marine Heatwaves, Oceanography, 31 (2)
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Definition: “Permanent MHW" = Full year (365 days) of MHW state
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Permanent MHW first reached in tropics by 2040, later at higher latitudes (both RCP4.5 and RCP8.5)

Proportion of globe in Permanent MHW state varies greatly by emissions scenario
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Future projections and ecosystem impacts

* Plotting MHWs in Intensity-Duration phase space allows us to map out trajectories in time

* Presently and in the future we are moving towards a portion of phase space where we may expect significant impacts,
as supported by studies on coral reefs, seagrass and barnacles
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Was climate change responsible for that event?

 We can't answer that, but re-phrase as how would climate change modify the likelihood of that event?

(A) = Moderate MHW days (B) = Strong MHW days
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Ongoing and future research

* Long records of daily SSTs from BC lighthouses + satellite data

* Looking at how coastal upwelling may act to isolate some regions
from large-scale marine heatwaves —e.g. “the Blob”

2014, 09, 10, BC

Jonathan Coyne
Honours student
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Ongoing and future research

* Maintains the R package for MHW detection

Strong background in computing, interests in machine learning
* Projects:
— Drivers of MHWSs in the NW Atlantic using ocean model output

- How can we detect MHWSs with sub-optimal data e.g. missing, short, etc.

- Global real-time MHW tracker! Live, interactive: www.marineheatwaves.org/tracker =~ Robert Schlegel
OFI Postdoc
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Ongoing and future research

* Physical oceanographer, with past experience looking at physics of Mediterranean
MHWs and the role of climate change — has a poster at this meeting on Med’'2003 event

* Will look at global distribution of MHWs:
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* And ask what are typical drivers/processes, in typical regions? How might this change in the future?
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Questions?

Eric Oliver

Department of Oceanography
Dalhousie University

Halifax, Nova Scotia, Canada
email: eric.oliver@dal.ca
website: ecjoliver.weebly.com

International Marine Heatwaves
Working Group

www.marineheatwaves.org



Theme: Physical drivers and
properties of marine heatwaves

When & where: 19-21 January
2015, University of Western
Australia Oceans Institute, Perth,
Australia

www.marineheatwaves.org

Theme: Ecosystem impacts of
marine heatwaves

When & where: The Marine
Biological Association of the UK,
Plymouth, UK

Theme: Global patterns and
impacts of risk

When & where: 21-23 February
2017 Ao Nang Beach, Krabi,
Thailand



The role of climate modes

Interestingly...

the dominant mode driving changes
in MHWs at each location

is not 1:1 with the dominant mode

driving changes in SST. \ Qgﬁ g‘f‘f'
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Holbrook et al. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications. 10:2624



Plankton (23)
Macroalgae (21)
Seagrasses (8)
Corals (56)
Sessile inverts (13)
Mobile inverts (26)
Fishes (17)

Birds (6)

Mammals (11)
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Impacts
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The recorded, published impacts of MHWSs vary across taxonomic groups and type of response
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Smale et al. (2019) Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change

Proportion with negative
response to MHW

Species close to the warm edge of their thermal niche show the greatest likelihood of a negative response
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