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Regional NEP36 Model

Based on NEMO3.6

Resolution: horizontal 1/36° lat/lon (~1.7 km), 50
vertical levels

Initial & non-tidal conditions: T/S, U/V & SSH from
daily PSY4 (global 1/12° analysis product of Mercator-
Ocean, France)

8 tidal constituents from WebTide

Surface atmospheric forcing: hourly NCEP CFSR product
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River runoff: monthly climatology of river (Morrison et 140°W 136°w 132w 128°W 124°W
al., 2012)

Hindcast & “climatology OBC” test: 2007-2016



Motivation

Sea levels is readily observed by tide gauges and satellite
altimeters.

Variations of sea level, ocean heat content and currents are closely
linked

e.g., Northeast Pacific (NEP) “Blob” 2012-2016

Previous studies on sea level variations and forcing mechanisms in
NEP, e.g.,

Enfield & Allen 1980; Chelton & Davis 1982;
Tabata et al. 1986;

Stammer 1997; Cummins 2005;

Hermann et al. 2009; Masson & Fine 2012;
Thompson et al. 2014
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This study

Objectives:

Reconcile importance of wind & halosteric contributions to seasonal
variation

Clarify role of local & remote sensing
Reveal/confirm different forcing mechanisms at different time scales

Approach:

Joint analysis of tide gauge & altimeter observations, high-resolution
model simulations, atmospheric forcing

Compute thermal and haline components of steric height
Correlation & regression analysis
Analysis based on monthly averages.



Mean Sea Level & Surface Geostrophic Currents
(2008-2016)

Altimeter NEP36
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Compared to altimeter data, NEP36

 Captures large scale features of surface geostrophic currents
 Generates higher coastal sea level and stronger coastal currents
* Produces less small-scale eddies than altimeter data
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Seasonal Cycle of Sea Level

Altimeter
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NB: Weak signal
over shelf break

NB: Out of phase
between shelf &
deep waters



Standard Deviation of Sea Level Anomaly (SLA)
(Seasonal Cycle Removed)

Altimeter Hindcast Obc Test
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 Minimal amplitude near shelf break: different dynamics between shelf & deep waters
* Interior eddies: model too strong or altimeter too weak?



Sea level height (m)

Sea Level Anomaly at Tide Gauge Tofino
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 Hindcast obtains
sub-seasonal &
inter-annual
variations similar
with observations

 “Climatology OBC”
produces much
weaker variations:
Remote forcing
important!



Correlation of Sea Level Anomaly at Tofino with Large Scale

Altimeter NEP36
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* Large-scale coherence on shelf — SLA at Tofino well represents variability on shelf.
* Correlations significantly decrease in deep water.



Calculation of Steric Height at Tofino

Density Extended Density
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“Bottom density” method first introduced by Helland-
Hansen (1934):

» Extend bottom T/S along section horizontally under
1N sea floor from their point of intersection to coast
s o » Assume zero cross-shelf gradient of dynamic
. v ¥ WRE height, hence zero along-slope geostrophic flow at

bottom.
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Animation: Sea Level, Steric Height & Density Variations

200801
0.3-
0.2
5 — Sea Level
@ &l — Steric Height
O_
-0.11

-140 -138 -136 -134 -132 -130 -128 -126

1028
1027
1026
1025
1024
| B 1023
1022
| 1021

-140 -138 -136 -134 -132 -130 -128 -126

Depth (m)

* Steric height accounts for most sea level variations;
e Strong T-S variability in upper 200 m.



Sea level height (m)

Tofino — Sea Level and Steric Height

Seasonal cycle

e Steric height accounts for seasonal sea level
& haline effect dominant; consistent with
Tabata et al. (1986) based on observations.

* Importance of seasonal wind is well known,
but influence of wind is through baroclinic
process!
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Sea level anomaly (seasonal cycle removed)
| * Steric accounts for SLA variations.
015k : | * Significant haline effect even with climatology
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Thermal & Haline Contributions to Steric Height
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Deep ocean:
* Higher energy at
lower frequencies

Shelf:

e <20 months
haline effect is
higher

e > 20 months
thermal effect is
higher



Regression of Steric Height at Tofino onto Wind Stress

Thermosteric Halosteric

Importance of remote

winds:

* < 5 months: mid-
latitude winds onto
coast of
Washington &
Oregon states

e 5-20 months: mid-
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Relationship of SLA at Tofino with Pacific SLA
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Linkage between SLA Variations on Shelf and in Deep NEP

(a) Altimeter

2016 -
2014 -
2012
2010 -
2008 -

2016
2014 -
2012

2010 1

2008

140°W 135°W 130°W

0.2

—l

(c) Thermal

-0.05

*—

140°W 135°W 130°W

(b) NEP36,

.

“Blob” signal
extends from deep
ocean onto shelf
Mid-latitude winds
drive thermal steric
Consistent with
Bond et al (2016).



Conclusions

On shelf, seasonal sea level maximum in winter is
caused by down-welling wind pushing upper layer
freshwater downward — a baroclinic process.

At time scales < 20 months, shelf sea levels are driven
by remote winds at mid-latitudes.

At 5-20 months & > 20 months, shelf sea levels are
linked to Trade Winds in central tropical Pacific.

Overall, remote wind is a key driver of sea level
variations in shelf waters off British Columbia.
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