Forcing mechanisms of sea level variations in shelf waters off the coast of British Columbia

Youyu Lu¹, Li Zhai¹, Xianmin Hu¹, Rachel Horwitz¹, Jean-Philippe Paquin², Charles Hannah³, William Crawford³

¹Bedford Institute of Oceanography, Fisheries and Oceans Canada ²Canadian Center for Meteorological and Environmental Prediction, Environment and Climate Change Canada ³Institute of Ocean Sciences, Fisheries and Oceans Canada

Regional NEP36 Model

- Based on NEMO3.6
- Resolution: horizontal 1/36° lat/lon (~1.7 km), 50 vertical levels
- Initial & non-tidal conditions: T/S, U/V & SSH from daily PSY4 (global 1/12° analysis product of Mercator-Ocean, France)
- 8 tidal constituents from WebTide
- Surface atmospheric forcing: hourly NCEP CFSR product
- River runoff: monthly climatology of river (Morrison et al., 2012)
- Hindcast & "climatology OBC" test: 2007-2016

Motivation

- Sea levels is readily observed by tide gauges and satellite altimeters.
- Variations of sea level, ocean heat content and currents are closely linked
 - e.g., Northeast Pacific (NEP) "Blob" 2012-2016
- Previous studies on sea level variations and forcing mechanisms in NEP, e.g.,

Enfield & Allen 1980; Chelton & Davis 1982;

Tabata et al. 1986;

Stammer 1997; Cummins 2005;

Hermann et al. 2009; Masson & Fine 2012;

Thompson et al. 2014

This study

- Objectives:
- Reconcile importance of wind & halosteric contributions to seasonal variation
- Clarify role of local & remote sensing
- > Reveal/confirm different forcing mechanisms at different time scales
- Approach:
- > Joint analysis of tide gauge & altimeter observations, high-resolution model simulations, atmospheric forcing
- Compute thermal and haline components of steric height
- Correlation & regression analysis
- Analysis based on monthly averages.

Mean Sea Level & Surface Geostrophic Currents (2008-2016)

Compared to altimeter data, NEP36

- Captures large scale features of surface geostrophic currents
- Generates higher coastal sea level and stronger coastal currents
- Produces less small-scale eddies than altimeter data

Seasonal Cycle of Sea Level

Amplitude = maximum minus minimum

Phase = month when maximum occurs

NB: Weak signal over shelf break

NB: Out of phase between shelf & deep waters

Standard Deviation of Sea Level Anomaly (SLA) (Seasonal Cycle Removed)

- Minimal amplitude near shelf break: different dynamics between shelf & deep waters
- Interior eddies: model too strong or altimeter too weak?

Sea Level Anomaly at Tide Gauge Tofino

- Hindcast obtains sub-seasonal & inter-annual variations similar with observations
- "Climatology OBC" produces much weaker variations: Remote forcing important!

Correlation of Sea Level Anomaly at Tofino with Large Scale

- Large-scale coherence on shelf SLA at Tofino well represents variability on shelf.
- Correlations significantly decrease in deep water.

Calculation of Steric Height at Tofino

Density

Extended Density

"Bottom density" method first introduced by Helland-Hansen (1934):

- Extend bottom T/S along section horizontally under sea floor from their point of intersection to coast
- Assume zero cross-shelf gradient of dynamic height, hence zero along-slope geostrophic flow at bottom.

Animation: Sea Level, Steric Height & Density Variations

- Steric height accounts for most sea level variations;
- Strong T-S variability in upper 200 m.

Tofino – Sea Level and Steric Height

Seasonal cycle

- Steric height accounts for seasonal sea level
 & haline effect dominant; consistent with
 Tabata et al. (1986) based on observations.
- Importance of seasonal wind is well known, but influence of wind is through baroclinic process!

Sea level anomaly (seasonal cycle removed)

- Steric accounts for SLA variations.
- Significant haline effect even with climatology runoff!
- Two spectral peaks centered at 14 & 2.5 months.

Thermal & Haline Contributions to Steric Height

Deep ocean:

 Higher energy at lower frequencies

Shelf:

- < 20 months haline effect is higher
- > 20 months thermal effect is higher

Regression of Steric Height at Tofino onto Wind Stress

Importance of remote winds:

- < 5 months: midlatitude winds onto coast of Washington & Oregon states
- 5-20 months: midlatitude & equatorial winds
- > 20 months: equatorial wind drives thermal component

Relationship of SLA at Tofino with Pacific SLA

- < 5 months: positive (negative) correlation on shelf (deep ocean) are due to mid-latitude wind
- 5-20 months:
 effects of mid latitude &
 equatorial winds
- > 20 months: equatorial & midlatitude winds

Linkage between SLA Variations on Shelf and in Deep NEP

- "Blob" signal extends from deep ocean onto shelf
- Mid-latitude winds drive thermal steric
- Consistent with Bond et al (2016).

Conclusions

- On shelf, seasonal sea level maximum in winter is caused by down-welling wind pushing upper layer freshwater downward – a baroclinic process.
- At time scales < 20 months, shelf sea levels are driven by remote winds at mid-latitudes.
- At 5-20 months & > 20 months, shelf sea levels are linked to Trade Winds in central tropical Pacific.
- Overall, remote wind is a key driver of sea level variations in shelf waters off British Columbia.