Importance of simulating coastal biogeochemical processes for projections of ocean acidification on the Bering Sea shelf **Darren Pilcher ^{1,2}, Jessica Cross ², Albert Hermann ^{1,2}, Samuel Mogen ^{2,3} Kelly Kearney ^{1,4}, Wei Cheng ^{1,2}** ¹ Joint Institute for the Study of the Atmosphere and Ocean, University of Washington ² NOAA Pacific Marine Environmental Laboratory ³ University of Virginia ⁴ NOAA Alaska Fisheries Science Center darren.pilcher@noaa.gov #### Ocean Acidification poses a risk to Alaska's fisheries Marine calcifying organisms use Ω_{arag} to build shells and hard parts Ω_{arag} < 1 indicates dissolution #### **Spatial Variability** ### Spatial variability within ecosystem habitats Bering Sea shelf composed of multiple ecosystem regions Dynamical downscaling produces climate change projections on a similar spatial scale #### **Dynamical Downscaling** - Bering10K: 10km horizontal resolution with 30 vertical layers - BEST-NPZ ecosystem (Gibson and Spitz 2011) with recent overhaul by Kearney et al. in review - Earth System Model provides atmospheric forcing and horizontal boundary conditions - Each simulation started from year 2006 taken from previous hindcast - 6 total simulations, using 3 CMIP5 ESMs (GFDL-ESM2M, MIROC, CESM) and 2 emissions scenarios (RCP 8.5, 4.5) #### Downscaled physical results #### Ocean pCO₂ closely follows atmosphere in all scenarios ## Decreasing surface and bottom Ω_{Arag} #### Why is the MIROC model different? #### How does the downscaling compare to the ESMs? #### How does the downscaling compare to the ESMs? #### Spatial plots highlight regional differences #### Spatial plots highlight regional differences #### Spatial results highlight regional differences #### Spatial results highlight regional differences #### Next steps - Finish CESM downscaling simulations - Mechanistic analysis of model differences - Incorporate oxygen for a multiple stressor analysis #### Conclusions - Rate of change for collective shelf is similar between models, despite differences in physical forcing - Within shelf though, rates can differ substantially - SE Bering Sea emerges as a hot spot for OA - Accurate initial state is critically important for projecting when key thresholds are passed Questions? Darren.pilcher@noaa.gov