

Influences of wind, sea state, and oil type on oil dispersion in the Salish Sea

Presented by: Rachael D. Mueller, Ph.D.

Co-authors: Shihan Li, Ashutosh Bhudia, Vicky Do, Krista Forysinski, Doug Latornell, Ben Moore-Maley, Susan Allen, Haibo Niu, and Stephanie Chang

THE UNIVERSITY OF BRITISH COLUMBIA

Queen Charlotte Sound (11/27/2017)

- ATB de-coupling

Oil spill response strategies

RESPONDING TO OIL SPILLS AT SEA

DISPERSION

Chemical dispersion is achieved by applying chemicals designed to remove oil from the water surface by breaking the oil into small droplets.

BURNING

Also referred to as in situ burning, this is the method of setting fire to freshly spilled oil, usually while still floating on the water surface.

BOOMS

• 10 1.

Booms are long, floating barriers used to contain or prevent the spread of spilled oil.

SKIMMING

Skimming is achieved with boats equipped with a floating skimmer designed to remove thin layers of oil from the surface, often with the help of booms.

f(sea state)

https://response.restoration.noaa.gov/about/media/how-do-oil-spills-out-sea-typically-get-cleaned.html

Spill response by wind speed

Environment Canada 2004 report by Merv Fingas

What does oil spill fate look like in the Salish Sea under different sea states?

Modeling Potential Oil Spills

(for preparedness)

SalishSeaCast

NEMO 3.6

- 500 m, structured grid
- 1 27 m depth levels

Open boundaries

- Temperature and Salinity
- Tides
- Sea Surface Height

Rivers

- Gauged Fraser River
- Watershed climatology

Atmospheric Forcing

• 2.5 km HRDPS winds

SOILED: Salish Sea Cast (Oiled)

(for preparedness)

Weathering of spilled oil

http://www.medess4ms.eu/marine-pollution.

Response efficacy by wind speed

Environment Canada 2004 report by Merv Fingas

Wind-climatology of spill impacts

Strait of Juan de Fuca

HRDPS model climatology

Preliminary study sites

Variability: Salmon Bank (SB)

Variability: Turn Point (TP)

Variability: Strait of Georgia (SOG)

2 cases: Strait of Georgia (SOG)

Non-freshet, weaker winds

PRELIMINARY RESULTS

Fraser River freshet, stronger winds

PRELIMINARY RESULTS

Consider: Oil Spill Impacts are likely to vary in space and time, based on ocean conditions and sea state

PRELIMINARY RESULTS

Model of Impacts of Dilbit and Oil Spills in the Salish Sea

Dr. Susan Allen

Dr. Hiabo Niu

Dr. Stephanie Chang

Krista Forysinski

Doug Latornell

Shihan Li

Ben Moore-Maley

Ashutosh Bhudia Cameron Power Leni Vispaziani Ryah Rondolo Vicky Do Xiaomei Zhong

