Developing the Global Ocean Observing System for Marine Life Qualities, attributes, and readiness of existing biological Essential Ocean Variable networks

Erin Satterthwaite

Patricia Miloslavich, Nic Bax, Daniel Dunn, and members of the GOOS Biology & Ecosystems Panel & PEGASuS project

Community effort!

What currently exists...

- Many existing global ocean observing infrastructure & programs do not explicitly consider observations of marine biodiversity
- Hundreds of long-term programs measure important marine biological variables around the world but:
 - Not globally coordinated
 - Information on programs (metadata) & raw data may not be easy to find
 - Data may not be openly available or accessible
 - Programs may collect data in different ways

The Vision A globally coordinated & sustained observing system for marine life

The Global Ocean Observing System for Marine Life will contribute to a larger-scale, holistic understanding of our oceans relevant to societal needs

Why a global biological ocean observing system?

- Integration across larger scales to have a more holistic understanding of the global ocean
- Understand how human activities & environmental change are affecting marine ecosystems
- Societal needs, including sustainability & sustainable development, require elucidating properties of complex, interconnected, and large-scale systems
- Relevant to many people such as the scientific community, intergovernmental processes, & national reporting needs

Why a global biological ocean observing system?

• UN Decade of Ocean Science for Sustainable Development

Ocean Obs 2019 Conference

• PICES

021 United Nations Decade of Ocean Science for Sustainable Development

The journey to a globally coordinated ocean observing system for marine life

- A shared value proposition
- Strengthened partnerships & develop leadership
- Build the foundation for implementation
- Implement technological developments
- Expand network coverage
- Advance the use & impact of observations

The journey to a globally coordinated ocean observing system for marine life

- A shared value proposition
- Strengthened partnerships & develop leadership
- Build the foundation for implementation
- Implement technological developments
- Expand network coverage
- Advance the use & impact of observations

Strengthening partnerships & developing leadership requires a coordinating framework:

• Essential Ocean Variables (EOVs) provide an approach to coordinating the ocean observing community

Strengthening partnerships & developing leadership requires a coordinating framework:

• Essential Ocean Variables (EOVs) provide an approach to coordinating the ocean observing community

Strengthening partnerships & developing leadership requires understanding...

Which EOVs are being measured by each observing network?

What are the existing marine biological observing networks around the world?

• Where does each observing network sample?

 How long has the network been running & how often does each network sample?

 Can the data obtained by each observing network contribute to the biological ocean observing system? Strengthening partnerships & developing leadership requires understanding...

Which EOVs are being measured by each observing network?

What are the existing marine biological observing networks around the world?

• Where does each observing network sample?

 How long has the network been running & how often does each network sample?

 Can the data obtained by each observing network contribute to the biological ocean observing system?

Identify existing observing programs measuring EOVs

- Surveyed about 200 large scale, long-term observing programs
- Conducted expert consultations with EOV champions to identify additional networks
- Included networks that were:
 - Marine & coastal
 - In-situ measurements
 - Raw data providers
 - Currently active
- 2 networks to 46 networks sample each EOV
- 44 networks from North Pacific

Strengthening partnerships & developing leadership requires understanding...

Which EOVs are being measured by each observing network?

What are the existing marine biological observing networks around the world?

• Where does each observing network sample?

 How long has the network been running & how often does each network sample?

 Can the data obtained by each observing network contribute to the biological ocean observing system?

Spatial Scale: Marine Microbes

5⁵

Longitude

64% of LMEs that have *marine microbes* are sampled by at least one monitoring network
2 global networks sample *marine microbes*

Spatial Scale: Marine Microbes

5⁵

Marine microbes are sampled in some regions of the North Pacific, but gaps exist

Spatial Scale: Marine Phytoplankton

Longitude

65% of LMEs that have *marine phytoplankton* are sampled by at least one monitoring network **4 global networks** sample *marine phytoplankton*

Spatial Scale: Marine Phytoplankton

Marine phytoplankton are sampled in some regions of the North Pacific, but gaps exist

Spatial Scale: Marine Zooplankton

74% of LMEs that have *marine zooplankton* are sampled by at least one monitoring network2 global networks sample *marine zooplankton*

Survey link: tiny.cc/BioObs

atitude

Spatial Scale: Marine Zooplankton

Marine zooplankton are sampled throughout the North Pacific

Spatial Scale: Marine Fish

82% of LMEs that have *marine fish* are sampled by at least one monitoring network5 global networks sample *marine fish*

Spatial Scale: Marine Fish

Marine fish are sampled throughout the North Pacific

Spatial Scale: Sea Turtles

74% of LMEs that have *marine turtles* are sampled by at least one monitoring network3 global network samples *sea turtles*

Spatial Scale: Sea Turtles

Sea turtles are sampled in most regions where they exist in the North Pacific

Spatial Scale: Seabirds

I ongitudo

26% of LMEs that have *seabirds* are sampled by at least one monitoring network1 global network samples *seabirds*

Spatial Scale: Seabirds

I ongitudo

Sea birds are sampled in only a few regions of the North Pacific, many gaps exist

Spatial Scale: Marine Mammals

33% of LMEs that have *marine mammals* are sampled by at least one monitoring network3 global networks sample *marine mammals*

Spatial Scale: Marine Mammals

Longitudo

Marine Mammals are sampled in only a few regions of the North Pacific, many gaps exist

Spatial Scale: Seagrass

71% of LMEs that have *seagrass* are sampled by at least one monitoring network2 global networks sample *seagrass*

Spatial Scale: Seagrass

Seagrass are sampled in some regions of the North Pacific, but gaps exist

Spatial Scale: Macroalgae

33% of LMEs that have *macroalgae* are sampled by at least one monitoring network
3 global networks sample *macroalgae*

Spatial Scale: Macroalgae

Macroalgae are sampled in some regions of the North Pacific, but gaps exist

Strengthening partnerships & developing leadership requires understanding...

Which EOVs are being measured by each observing network?

What are the existing marine biological observing networks around the world?

- Where does each observing network sample?

 How long has the network been running & how often does each network sample?

Can the data obtained by each observing network contribute to the biological ocean observing system?

Temporal resolution: Many networks are **long**-**term** & sample on **regular intervals**

- Many networks are long-term & sample on regular intervals
- On average, networks have been sampling each EOV for between
 17 to 37 years
- Most networks within each EOV sample annually or multiple times a year

Strengthening partnerships & developing leadership requires understanding...

Which EOVs are being measured by each observing network?

What are the existing marine biological observing networks around the world?

• Where does each observing network sample?

 How long has the network been running & how often does each network sample?

Can the data obtained by each observing network contribute to the biological ocean observing system?

Data access: Similar distribution of data access across EOVs

- Fewer than a third of networks meet open data standards
- Data & metadata follow FAIR data principles
 - Findable
 - Accessible
 - Interoperable
 - Reuse

Key features of observing networks

Mission – addresses scientific questions relevant to national and regional science, policy and management needs.

Spatial scale – serves local and national needs but contributes (or aspires to contribute) to a global operational system, including regular reporting to support globally relevant indicators.

Sustainability – surveys produce information on trends over time and are intended to be repeated in the future (Historic data can also be useful and should be archived).

Best practice – network recognizes global accepted standards from data collection to end-user delivery, and is responsive to new technologies, SOPs, data management and delivery.

FAIR data standards – network has clear mechanisms for data attribution and provenance leading to open data, has documented SOPs used for data collection, and adequate metadata to support interoperability, data aggregation and reuse.

Capacity development and technology transfer – supports extension of SOPs and best practices supporting local/regional and/or global needs and priorities

Conclusions: Global

- There are existing measurements for biological EOVs in many places around the world
- Many networks are long-term & sample on regular intervals
- A third or less of networks meet open data standards
- Most EOVs are in the pilot stage, requiring greater spatial coverage & increased data access to move toward mature systems according to the Framework for Ocean Observing (FOO)
- Results are preliminary: Not all observing networks have been identified or responded

Conclusions: North Pacific

Zooplankton & fish sampled throughout the North Pacific

- Microbes, phytoplankton, seagrass, macroalgae, seabirds, turtles, and marine mammals are sampled in some parts of the North Pacific
- A few long-term programs exist
- Regional assessments may be required to provide the detail necessary to prioritize future network development needs

Future Directions

- Ongoing, community effort
- More consistent & regularly updated network metadata is required to more accurately assess readiness, opportunities, and gaps in coverage
- Continuing to identify additional observing networks, especially at the local & national levels
- Surveying more observing networks to obtain additional information to further assess readiness
- "Landscape network map" of data providers, data aggregators, and users to understand the connectivity of programs and networks for each EOV

Why join the movement toward a globally coordinated biological observing system?

- Develop professional relationships with other people around a shared vision
- Increase opportunity for scientific & stakeholder collaborations
- Answer questions at larger scales to discover new societal & scientific insight
- Leverage resources across networks for mutual benefit
- Decrease resources used by individual observing programs
- Utilize existing platforms to decrease redundancy & increase cost efficiency
- Foster a global perspective to inform local actions
- Co-design standards, protocols, and resources to increase efficiency & streamline efforts for individual programs
 - Encourage the development of new multipurpose technologies through strengthened multidisciplinary collaborations

How can you contribute?

- Ensure we are including your networks- fill out the survey below
- Support in integrating biological essential ocean variables into the existing observing networks in your region
- Develop partnerships with other complimentary programs in your region
- Make sure metadata for observing programs is available online, complete, & updated regularly
- Input data into the Ocean Biogeographic Information System, to ensure that your data and network are discovered
- Input best practices into the Ocean Best Practices System
- Communicate your observing needs to local, regional, and global observing systems
- Support in fostering a culture change toward collaboration, shared resources, & data

Survey link: tiny.cc/BioObs

da 10 Mar Martha Sealor