### Tracer relationships in surface waters of coastal waters from the Gulf of Alaska, Bering and Chukchi Seas

Burke Hales<sup>1</sup>

Laurie Juranek<sup>1</sup>

Selina Lambert<sup>1</sup>, Carrie Weekes<sup>1,2</sup>, and Katie Pocock<sup>2</sup>

- 1: Oregon State University College of Oceanic and Atmospheric Sciences
- 2: Hakai Institute of the Tula Foundation



### A Stirred Up Arctic

Does reduced ice cover in late-summer coastal Arctic waters allow a second burst of productivity as katabatic winds mix exposed waters and re-supply nutrients to the surface?



### Relevance of high-latitude carbonate chemistry?

Air-sea CO<sub>2</sub> exchange. High-lat areally-disproportionate sink, may be intensifying



Takahashi et al., 2009

Ocean acidification. Arctic has seemingly benign pH, but low shell-mineral stability



Takahashi et al., 2014

### New monitoring approaches

Full constraint of carbonate system requires determination of two independent parameters; 'safest' two are  $CO_2$  partial pressure ( $pCO_2$ ) and total dissolved carbonic acid ( $TCO_2$ )



Combined pCO<sub>2</sub>/TCO<sub>2</sub> measurement on continuous flow and/or discrete samples (aka 'Burke-o-Lator').

State of the art accuracy and precision (0.2% in  $TCO_2$ , and < 1% in  $pCO_2$ ).

Two parallel systems aboard RV Sikuliaq, one in continuous TCO<sub>2</sub> mode, one in continuous pCO<sub>2</sub>



### Cruise description



Two cruises, Nome-Nome:

#### 3-24 September 2016

-Focus on Chukchi Sea waters > 20 nm offshore, but with excursion to Beaufort Sea and Arctic Basin.

-Significant wind-transport of ice into study area

#### 8-22 August 2017

Focus on Chukchi Sea waters closer to shore.

No sea ice in study area.







# Biological and physical drivers

Low pCO<sub>2</sub> is the result of remnant net productivity and slow gas-exchange time-scales for CO<sub>2</sub>.

Local features show strong coherence.

Normalization of O<sub>2</sub> to the inert Ar highlights the role of biological processes

Differential gas exchange timescale explains the loss of  $O_2$  supersaturation while  $pCO_2$  remains low.

Late O<sub>2</sub>/Ar undersaturation implies development of respiration signal



# Calculated parameters

With coincident TCO<sub>2</sub> and pCO<sub>2</sub> (and T and S) we can recalculate other parameters of the carbonate system.

Alkalinity is the most basic of these parameters, as it is Temperature-independent, and displays quasi-conservative behavior with respect to Salinity.

Its determination allows recalculation of pCO<sub>2</sub> @ in situ temperatures, and local determination of the T-correction coefficient.



# Calculated parameters

Other parameters of interest can be calculated as well.

The overall low pCO<sub>2</sub> corresponds with an overall high pH. Good news for OA, right?

Wrong. The most proximally important parameter, shell-mineral stability (aka  $\Omega$ ), is low.

Always below chronic-effect threshold in 2016.

~50% of time below acute threshold

Sometimes even corrosive!

### Failure of single-proxy assessment of Ocean Acidification status



One last reminder of the need for full CO<sub>2</sub>-system constraint.

Different  $\Omega$  for same pH among different water masses (>100% difference in  $\Omega$  for common pH).

Different  $\Omega$ -pH relationships across water masses, between years.

### Alkalinity - Salinity

Alkalinity is semi-conservative, and can be estimated from empirical dependences on salinity



Recent results show several distinct Alk-S characteristics

### Sources of variability in the alk-S relationship



Takahashi et al. 2014 identified several proximally-relevant subregimes.

These have distinct Alk-S relationships

### Our data within this context



Best overall agreement Takahashi's historical data is with the 'Beaufort Sea'

Significant areas of departure from published relationships, mostly negative in 2016: As much as 80  $\mu$ mol kg<sup>-1</sup> (0.15 error in  $\Omega$ )

Positive deviations in 2017, both at high and low-S

What are these? Calcification? De-nitrification? Multiple end-member mixing? High-Alk terrestrial freshwaters?

#### Conclusions

- First-ever high-resolution continuous combined pCO<sub>2</sub> and TCO<sub>2</sub> measurements in Arctic surface waters show low pCO<sub>2</sub>, persistently below atmospheric saturation.
- pCO<sub>2</sub> is low because of recent net community photosynthesis; persists because of long gas-exchange times for CO<sub>2</sub>.
- Combination of pCO<sub>2</sub> and TCO<sub>2</sub> allows most robust calculation of other carbonate-system parameters like alkalinity, pH, and  $\Omega$ .
- Low  $pCO_2$  and high pH belie low  $\Omega$ , frequently below thresholds identified for harmful impacts on planktonic larval bivalves, and illustrating the need for full carbonate-system constraint.
- Alk-S relationships show significant departures from historical data; causes uncertain.

### Acknowledgements

Dale Hubbard, Oregon State University College of Oceanic and Atmospheric Sciences

Carrie Weekes and Selina Lambert, Oregon State University









