Multi-species quantitation with eDNA – is it possible?

Kristi Miller¹, Christoph Deeg², Shaorong Li¹, Dylan Shea³, Chrys Neville¹, Dan Selbie¹

¹Fisheries and Oceans Canada, ²University of British Columbia, ³University of Toronto

PICES 2019

Fisheries and Oceans Canada

Environmental DNA

- 1: Species biodiversity: metabarcoding and high throughput sequencing
 - Ecosystem monitoring
 - Zooplankton assemblages
 - Diet analyses (scats or stomach contents)
 - Industrial bioremediation

- 2: Single species quantitation or presence/absence: qPCR
 - Invasive species assessments
 - Species at risk
 - Species surveys—occupancy models, range expansion, abundance estimates

- 3: Multi-species quantitation: microfluidics qPCR
 - Ecosystem-based stock assessments
 - Diet quantitation
 - Infectious agent distribution and spread; transmission risk
 - Salmonsphere--quantitating salmon, their predators, prey, competitors

eDNA quantitation in the salmonsphere

- Salmon occupy freshwater and saltwater ecosystems
 - Freshwater: rivers, lakes
 - Estuaries
 - Marine: coastal and offshore
- Stock assessments use different methods to assess presence, abundance, biomass, catch per unit effort
 - Freshwater—electrofishing, hydroacoustics, beach seining, trawl and gillnet sampling, fence enumeration
 - Ocean—trawl and gill net sampling, hydroacoustics
- Program establishing eDNA methods for relative quantitation of the salmonosphere, including:
 - Biological agents negatively impacting salmon: Pathogens and harmful algae
 - Salmon species
 - Marine fish competitors/prey
 - Planktonic prey
 - Predators

Literature on eDNA quantitation

- Salmon occupy freshwater and saltwater ecosystems
 - Freshwater: rivers, lakes
 - Estuaries
 - Marine: coastal and offshore
- Stock assessments use different methods to assess presence, abundance, biomass, catch per unit effort
 - Freshwater—electrofishing, hydroacoustics, beach seining, trawl and gillnet sampling, fence enumeration
 - Ocean—trawl and gill net sampling, hydroacoustics
- Program establishing eDNA methods for relative quantitation of the salmonosphere, including:
 - Biological agents negatively impacting salmon: Pathogens and harmful algae
 - Salmon species
 - Marine fish competitors/prey
 - Plankton prey
 - Predators

Multi-species quantitation: Fluidigm BioMarkTM Microfluidics System: High Throughput qRT-PCR

Images: web.biosci.utexas.edu

96x96 Dynamic Array = 9,216 reactions / run

Proven method for simultaneous quantification of 47 salmon pathogens from tissue samples

applications to eDNA?

Quantitating Pathogens: Salmon farms and pathogen spillover

Sustained farm transmission

Density independent transmission in wild hosts

Disease-induced declines (Krkosek et al., 2007)

Fluidigm BioMarkTM: High Throughput Pathogen monitoring

Duplicates of Pathogen assays

Pathogen Detections (2017)

Agent	Classification	Pathology	Detections	
			Active	Fallowed
Flavobacterium psychrophilium	Bacteria	coldwater disease	2	2
Moritella viscosa	Bacteria	winter ulcer	9	3
Piscirickettsia salmonis	Bacteria	piscirickettsiosis	13	5
Uncultured Chlamydia spp.	Bacteria	gill chlamydia	19	33
Tenacibaculum maritimum	Bacteria	tenacibaculosis	2	0
Vibrio anguillarum	Bacteria	vibriosis	0	1
Vibrio salmonicida	Bacteria	anemia	3	1
Yersinia ruckeri	Bacteria	enteric redmouth disease	1	1
Erythrocytic necrosis virus	dsDNA virus	erythrocytic necrosis	8	8
Newly characterized RNA Virus	dsRNA virus	Unknown	2	0
Viral encephalopathy and				
retinopathy	ssRNA (+sense) virus	viral nervous necrosis	1	0
Facilispora margolisi	Microsporidian parasite	various symptoms	1	0
Paranucleospora theridion	Microsporidian parasite	proliferative gill disease	6	8
Ichthyophonus hoferi	Protozoan parasite	muscle lesions	1	0

Consistency of results between years

Biosecurity Monitoring: Next Steps

- Assess dispersion of pathogens away from salmon farms
- Use stationary biomass of non-endemic Atlantic salmon to assess coastal dispersion of fish eDNA
 - Given differences in longevity/degradation (days to weeks vs <1 day), expect that microparasite dispersion is considerably greater than fish eDNA

Chinnok Sockeye Chum Pink Coho Pacific Salmon species

eDNA: "Salmonsphere"

Species-Specific Assays to Fishes

14 assays for 13 species validated on the fluidigm

- Salmon: Atlantic (2), Chinook, chum, coho, sockeye, pink
- Marine fishes: anchovy, eulachon, herring, pollock, sandlance, stickleback, surf smelt
- Under Development
 - ► Trout: steelhead, cut throat, bull trout
 - ► Marine fishes: lamprey, Pacific cod, dolly varden

eDNA: "Salmonsphere"

Straight of Georgia

- eDNA sampling integrated with existing research stock assessment cruises
- Trawl Sampling in transects over ~1-3 km (C. Neville)
- ▶ eDNA point sampling (2017/18)
- ▶ eDNA transect collection (2019)
- Filtration (2 litres 0.22 Sterivex filter)

eDNA: "Salmonsphere"

Straight of Georgia stock assessment

- Samples processed
 - ▶ 2017: 60 (point source)
 - ▶ 2018: 29 (point source)
 - ▶ 2019: 44 (mostly transect)

Fluidigm Heat Map: fish eDNA

eDNA processing and detections

Species	Assay	# of Detections	
SALMON			
Atlantic salmon	Sasa_Cytb_MGL1	13	
Atlantic salmon	Sasa_COI_Atkinson	8	
Chinook	Onts_Cytb_MGL3	48	
Chum	Onke_Cytb_MGL4	16	
Coho	Onki_Cytb_Pilliod	39	
Sockeye	Onne_COIII_Tillo	12	
Pink	Ongo_Cytb_MGL1	6	
MARINE FISHES			
Anchovy	AnchvyD_Sassou	20	
Eulachon	Thpa-Eu_cytB_MGL3	4	
Herring	Cluhar_CytB_Sterrn	56	
Pollock	Gchalc_CytB_MGL2	3	
Sandlance	Ampe-Sdl_COI_MGL6	5	
Stickleback	GaacCB_Thomsen 13		
Surfsmelt	Hpre-Surf_cytB_MGL3	0	

- Sample processing details
 - Dneasy PowerWater Sterivex kit for DNA isolation
 - Control samples of all species pooled and diluted to evaluate efficiencies
 - 9 blank field replicates (undetectable DNA, only one very weak positive)
 - No biological replicates run (yet)
- Linkages between trawl and eDNA overall (all detections vs only triplicate detections)
 - ► eDNA only: 65% vs 33%
 - ► Trawl only: 15% vs 33%
 - Note low DNA conc samples not removed
 - ► Co-detection: 17% vs 33%

eDNA: "Salmonsphere"

Straight of Georgia

- Positive trend for sockeye and pink salmon
- Eulachon negative trend
- Insufficient data to run transect alone

eDNA: "Salmonsphere"

Straight of Georgia stock assessment

- Stochastic factors not currently accounted for:
 - ► Variable trawl depths sampled 0 to 60 meters
 - Variable seasons summer vs fall
 - ▶ Variable transect lengths 13-30 min (approx. 1-3 km)
- eDNA dispersion scale: Direct correlation within point samples and transects vs more broadly within oceanographically defined "regions"

eDNA characterization of the "Salmonsphere"

Interior lakes juvenile assessment

- DFO Freshwater Ecosystems Section (D Selbie)
- Species, density, and biomass of pelagic fish assemblages in juvenile sockeye salmon (Oncorhynchus nerka) rearing lakes
- Night time hydroacoustic surveys
 - More objective biomass estimation than trawl survey
- eDNA survey along transect

Acoustic transducer deployed from boat during hydroacoustic surveys

eDNA characterization of the "Salmonsphere"

Interior lakes juvenile assessment: Quesnel lake

Quesnel Lake, BC, October 2019

Crew heading out to night time survey and sample processing

eDNA characterization of the "Salmonsphere"

Interior lakes juvenile assessment: Shuswap Lake

Shuswap Lake, BC, August 2019 nighttime surveys

eDNA Summary

- Simultaneous detections of 19 viruses, bacteria, and micorparasites show higher diversities close to farms, consistent with agent distributions on farms
- Species-specific assays to 13 salmon and marine fish species developed for simultaneous quantitation
- Field sampling methods to work alongside stock assessment activities developed, but stochasticity in traditional methods (e.g. depth and transect lengths sampled) may impact our ability to correlate with eDNA
- Future directions:
 - Increase sample sizes and include biological replicates
 - develop models that explore relationships between quantitations with depth, point vs transect sampling vs oceanographically-defined regions
 - Evaluate eDNA quantitation and dispersion in coastal marine environment using stationary biomass of farmed Atlantic salmon
 - Combine hydroacoustic models with established degradation rates of salmon eDNA in the laboratory to model the spatial resolution for eDNA quantitation of fish in the coastal margin