Using machine learning techniques to
estimate pelagic species distributions
under novel environmental conditions in
the California Current system

Barbara Muhling, Carlos Gaitan, Elliott Hazen, Stephanie Brodie, Michael Jacox,
James Smith, Desiree Tommasi, Toby Auth, Rick Brodeur

%, UNIVERSITY OF CALIFORNIA

L SNTA CAUL




Climate change and transboundary fish stocks

Climate change >  Species redistributions | > Management challenges
. Pinsky et al. 2018
gﬁg ClimatEChange e
The number of EEZs with new transboundary
Mackerel migrating to the north: stocks increases with global temperature
the first climate change related greenhouss gas emissons soonaro (RCP 5, e and owerundet

low-emissions scenario (RCP 2.6, blue). See supplementary materials.

conflict in European politics?

October 9th, 2017 120
. 100 o
Hakal Coastal science and societies N -
magazine —— *g
International Fish Fights on the Rise e

A new report shows that there is increasing competition 40

between countries for access to seafood. @ Individual model high emissions
@ Model average, high emissions
@ Individual model, low emissions

@ Model average, low emissions

05 1 15 2 28 3 35 4 45 5 55
Change in atmospheric temperature (°C)



Species distribution models (SDMs)

* Quantify relationships between species distribution and oceanographic environment
* Many methods available, including some machine learning techniques

Biological observations
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Approach

Test performance of three different types of SDM during novel environmental conditions

Sardine (Sardinops sagax) and anchovy (Engraulis mordax) in the California Current
* Adults from trawl surveys
* Larvae from CalCOFI plus other surveys (Auth, Brodeur et al.)
Biological data split into three sections:
* Model training: to build the SDM (2002 — 2013)
* Model testing: to determine the best configuration for the SDM (2002 — 2013)
* Model validation: marine heatwave years (2014 — 2016)
Historical test/train split:
1. 50% of data used for model training, 50% for model testing, split determined randomly, repeated 3 times




Approach - 2

* Two binomial SDMs built for each species/life stage and method:
* One including only environmental and stock size predictors
* One also including latitude, longitude, and month

e Three SDM methods:

* Generalized Additive Models (GAMs) in the mgcv package

* Number of knots (k) allowed to vary from 3 - 7, to keep partial relationships biologically reasonable
* Boosted Regression Trees (BRTs) in the gbm package

* Tree complexity allowed to vary from 3 — 9, number of trees from 1000 — 3000
* Multilayer Percepton (MLP) neural networks in the neuralnet package

* One hidden layer. Number of neurons in hidden layer allowed to vary from 1 - 10

* Resilient backpropagation with weight backtracking algorithm

* The best SDM configuration was chosen based on highest AUC against model testing data
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Environmental predictors

ROMs Variable

Biological Relevance

Moon phase

Sea surface temperature

SD of sea surface temperature
Sea surface height

SD of sea surface height
Eastward surface current flow
Eastward surface wind stress
Northward surface current flow
Northward surface wind stress
Wind stress curl

Eddy kinetic energy
Isothermal layer depth

Bulk buoyancy frequency

Foraging behavior and depth distribution
Metabolic processes, thermal niche
Dynamic temperature variability
Mesoscale current and eddy features
Dynamic mesoscale feature variability
Inshore/offshore transport

Nearshore dynamics, retention
Alongshore transport

Upwelling proxy

Tendency for convergence/divergence at surface
Eddy dynamics

Depth of surface mixing

Stratification and stability in upper water column
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Fit to unseen test and validation data

* Example showing AUCs for adult sardine from trawl surveys
e All SDMs did well when tested against unseen test data from 2002 - 2013
* |n contrast, all SDMs did quite poorly against the marine heatwave years (2014 — 2016)
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Model extrapolation: adult sardine
2002 - 2013
GAMs BRTs
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* Uncertainty in model
responses at high
temperatures for years
2002 — 2014 is magnified
during marine heatwave
years, especially in BRTs
and MLPs

e Partially due to low sample
sizes near limits
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Model extrapolation: larval anchovy
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But models do much better
when historical
relationships are more
linear, and more data
available near limits



Predicted Probability of Sardine Occurrence Apr. 2007
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Although AUCs low for sardine
SDM during marine heatwave
years, they did capture the
general movement north

So SDMs may still be useful for
picking up general trends, even if
they lose skill under novel
conditions
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Predicted Sardine Larvae Apr. 2007
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e Larval sardine SDMs also picked
up a northward movement of
spawning activity during the
marine heatwave, but predicted
that habitat would be further
south and offshore than it
actually was

’ Egg/Larval survey presence

+ Egg/Larval survey absence



Conclusions

* All SDMs lost a lot of skill when extrapolated to new environmental conditions
* But some still picked up useful trends

* GAMs and BRTs generally did better than MLPs

* Larval models (especially anchovy) did better than adult models
* Perhaps due to stronger and more linear associations with temperature
* And higher number of observations near distribution limits



Next steps

Random Forests?

Downsampling to reduce zero-inflation

Compare to simple SST niche model? Or to hybrid correlative-mechanistic models?
Other species?

Future projections!

Suggestions and comments are welcome

Thanks!

www.future-seas.com
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