Computer Vision-Based Detection of Schools of Herring from Acoustic Backscatter Time Series

Alireza Rezvanifar¹, Tunai Porto Marques¹, Melissa Cote¹, <u>Alexandra Branzan</u> Albu¹,

> Alex Slonimer², Thomas Tolhurst², Kaan Ersahin², Todd Mudge², and Stéphane Gauthier³

> > ¹University of Victoria, Victoria, BC, Canada. E-mail: aalbu@uvic.ca ²ASL Environmental Sciences Inc., Victoria, BC, Canada ³Fisheries and Oceans Canada - Institute of Ocean Sciences, Sidney, BC, Canada

PICES 2019 Annual Meeting

W15: Application of machine learning to ecosystem change issues in the North Pacific Victoria, BC, Canada

October 17-18, 2019

Detected school

Fisheries and Oceans Canada

- Study of acoustic backscatter:
 - Thorough, non-invasive approach
 - Allows to monitor underwater sites for ecosystem changes
- Data:
 - Acquired via multifrequency echosounders (e.g. AZFPs)
 - Visualized as 2D images (echograms)

Sample echogram (67 kHz)

Sample echogram (455 kHz)

- Challenges:
 - Echograms typically analyzed via manual or semiautomatic methods:
 - Time consuming (tons of data to analyze)
 - Prone to errors and inconsistencies
 - Expensive third-party software (e.g. EchoView)
- Solution:
 - Machine learning can improve data processing and interpretation!

• Collaborative project:

- Goal:
 - Explore novel ways to detect visual patterns from echosounder data using computer vision and machine learning techniques
- Case study:
 - Automatic detection of schools of herring from AZFP measurements

Contributions

- 1. We propose a dual paradigm approach for fish detection from echograms
 - Classical machine learning paradigm
 - Deep learning paradigm: novel application that goes beyond the few existing works

- 2. Our framework automates acoustic survey analyses
 - Will reduce processing times, required man-power, and inconsistencies in the results
 - Potential to be scaled to handle additional underwater species (e.g. salmon, zooplankton, etc.)

Proposed Method: Overview

Proposed Method: Overview

Inference Phase

Counts Images (4 frequency channels)

400

600

800 1000 1200

200

400

500

Computer Vision-Based Detection of Schools of Herring

Ĺ

Computer Vision-Based Detection of Schools of Herring

Classical ML: Classification

• Features:

- The objective is to engineer the best set of features based on contextual information of the schools
- Features should reflect the appearance and geometry of the schools
- Selected features are:
 - Mean intensity of regions
 - Ratio between the minor axis to the major axis of an ellipse that has the same normalized second central moments as the region
 - Eccentricity: how much the center of mass differs from the center of the circumscribed circle
 - Circularity: specifies the roundness of object
- Classifier:
 - The still popular Support Vector Machines (SVM) classifier with linear kernel is utilized

The use of deep learning frameworks can automate the classification task by computing discriminant features, **regardless of object class.**

- 1. Use a Convolutional Neural Network (CNN)-based architectures for the automatic extraction of features
- 2. Use the extracted features as inputs of a fully connected network (FCN) that generates *predictions*
- 3. Calculate the loss based on the ground truth data
- 4. Use backpropagation to update network parameters, yielding better predictions

Experimental Results - Dataset

Ground truth dataset

100 echograms

145 samples of schools of herrings

Samples are used for the extraction of hand-crafted features (SVM) and the training of the deep learning-based classifier.

Echograms with annotated samples (yellow bounding boxes)

How to determine if an ROI is a true positive?

1. Regions of Interest (ROI extractor output): Black bounding boxes

How to determine if an ROI is a true positive?

2. Use SVM (handcrafted-based features) or deep learningbased approach to classify each ROI: white bounding boxes represent prediction of *schools*

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

- 4. Calculate that for all samples in the dataset:
 - 100 samples
 - 145 instances of schools of herring

TP, FP, TN, FN

ROI Extractor Evaluation

Precision	Precision	Recall	F1-Score
0.0	0.173	0.931	0.292
0.2	0.171	0.917	0.288
0.4	0.155	0.834	0.262

• Entire Framework Evaluation (IoU = 0.4)

Architecture	Precision	Recall	F1-Score
ResNet50	0.77	0.85	0.81
DenseNet201	0.78	0.85	0.82
InceptionNet	0.81	0.81	0.81
Baseline (SVM)	0.51	0.78	0.62

SVM (IoU threshold 0.4)

Correct detections

Deep Learning: ResNet-50 (IoU threshold 0.4)

Correct detections

SVM (IoU threshold 0.4)

False detections (FP)

Deep Learning: ResNet-50 (IoU threshold 0.4)

False detection are now TN A new FP

SVM (IoU threshold 0.4)

False detections (FP)

Deep Learning: ResNet-50 (IoU threshold 0.4)

False detection are now TN

SVM (IoU threshold 0.4)

False detections (FP)

Deep Learning: ResNet-50 (IoU threshold 0.4)

False detection are now TN

Conclusion

- We explored machine learning approaches for the automatic detection of schools of herring from echograms created from AZFP data
- We proposed and compared two different methods to classify regions of interests:
 - hand-crafted features + support vector machine
 - features automatically extracted and classified by CNNs
- Both methods yielded good results, but CNNs performed best (F1-score: 0.82), even though the dataset was small
- Limitation: performance of ROI extraction, as classifiers can only classify extracted ROIs

Current/Future Work

- Our collaborative project continues!
 - Single deep learning detection pipeline:
 - Single network to perform localization and classification
 - More scalable approach
 - Extension to other species, structures, and phenomena that can be monitored with echosounders:
 - Current: salmon, zooplankton
 - Future: suspended sediments, ocean turbulence, etc.

References and Acknowledgment

Cortes, C., & Vapnik, V. (1995). Support-vector networks. *Machine Learning*, 20(3), 273-297.

- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, (pp. 770-778), IEEE.
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, (pp. 4700-4708), IEEE.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, (pp. 1-9), IEEE.
- Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, Inception-ResNet and the impact of residual connections on learning. In *Thirty-First AAAI Conference on Artificial Intelligence (AAAI)*, (pp. 4278-4284).

