Computer Vision-Based Detection of Schools of Herring from Acoustic Backscatter Time Series

Alireza Rezvanifar¹, Tunai Porto Marques¹, Melissa Cote¹, *Alexandra Branzan* **Albu**¹ ,

> $\mathsf{Alex} \ \mathsf{S}$ lonimer², Thomas Tolhurst², Kaan Ersahin², Todd Mudge², and Stéphane Gauthier³

> > *1University of Victoria, Victoria, BC, Canada. E-mail: aalbu@uvic.ca 2ASL Environmental Sciences Inc., Victoria, BC, Canada 3Fisheries and Oceans Canada - Institute of Ocean Sciences, Sidney, BC, Canada*

PICES 2019 Annual Meeting

W15: Application of machine learning to ecosystem change issues in the North Pacific Victoria, BC, Canada

October 17-18, 2019

Detected school

Fisheries and Oceans Canada

- Study of acoustic backscatter:
	- Thorough, non-invasive approach
	- Allows to monitor underwater sites for ecosystem changes
- Data:
	- Acquired via multifrequency echosounders (e.g. AZFPs)
	- Visualized as 2D images (echograms)

Sample echogram (67 kHz) Sample echogram (455 kHz)

- Challenges:
	- Echograms typically analyzed via manual or semiautomatic methods:
		- Time consuming (tons of data to analyze)
		- Prone to errors and inconsistencies
		- Expensive third-party software (e.g. EchoView)
- Solution:
	- Machine learning can improve data processing and interpretation!

● Collaborative project:

- Goal:
	- \circ Explore novel ways to detect visual patterns from echosounder data using computer vision and machine learning techniques
- Case study:
	- Automatic detection of schools of herring from AZFP measurements

Contributions

- 1. We propose a dual paradigm approach for fish detection from echograms
	- Classical machine learning paradigm
	- Deep learning paradigm: novel application that goes beyond the few existing works

- 2. Our framework automates acoustic survey analyses
	- Will reduce processing times, required man-power, and inconsistencies in the results
	- Potential to be scaled to handle additional underwater species (e.g. salmon, zooplankton, etc.)

Proposed Method: Overview

Proposed Method: Overview

Inference **Phase**

Computer Vision-Based Detection of Schools of Herring

Computer Vision-Based Detection of Schools of Herring

Classical ML: Classification

Features:

- The objective is to engineer the best set of features based on contextual information of the schools
- \circ Features should reflect the appearance and geometry of the schools
- Selected features are:
	- Mean intensity of regions
	- Ratio between the minor axis to the major axis of an ellipse that has the same normalized second central moments as the region
	- Eccentricity: how much the center of mass differs from the center of the circumscribed circle
	- Circularity: specifies the roundness of object
- Classifier:
	- The still popular Support Vector Machines (SVM) classifier with linear kernel is utilized

The use of deep learning frameworks can automate the classification task by computing discriminant features, regardless of object class.

- 1. Use a Convolutional Neural Network (CNN)-based architectures for the automatic extraction of features
- 2. Use the extracted features as inputs of a fully connected network (FCN) that generates *predictions*
- 3. Calculate the loss based on the ground truth data
- 4. Use backpropagation to update network parameters, yielding better predictions

Experimental Results - Dataset

Ground truth dataset

100 echograms

145 samples of schools of herrings

Samples are used for the extraction of hand-crafted features (SVM) and the training of the deep learning-based classifier.

Echograms with annotated samples (yellow bounding boxes)

How to determine if an ROI is a true positive?

1. Regions of Interest (ROI extractor output): Black bounding boxes

How to determine if an ROI is a true positive?

2. Use SVM (handcrafted-based features) or deep learningbased approach to classify each ROI: white bounding boxes represent prediction of *schools*

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

How to determine if an ROI is a true positive?

- **4. Calculate that for all samples in the dataset:**
	- **100 samples**
	- **145 instances of schools of herring**

TP, FP, TN, FN

● ROI Extractor Evaluation

• Entire Framework Evaluation (IoU = 0.4)

SVM (IoU threshold 0.4)

Correct detections

Deep Learning: ResNet-50 (IoU threshold 0.4)

Correct detections

SVM (IoU threshold 0.4)

False detections (FP)

Deep Learning: ResNet-50 (IoU threshold 0.4)

False detection are now TN A new FP

SVM (IoU threshold 0.4)

False detections (FP)

Deep Learning: ResNet-50 (IoU threshold 0.4)

False detection are now TN

SVM (IoU threshold 0.4)

False detections (FP)

Deep Learning: ResNet-50 (IoU threshold 0.4)

False detection are now TN

Conclusion

- We explored machine learning approaches for the automatic detection of schools of herring from echograms created from AZFP data
- We proposed and compared two different methods to classify regions of interests:
	- \circ hand-crafted features + support vector machine
	- features automatically extracted and classified by CNNs
- Both methods yielded good results, but CNNs performed best (F1-score: 0.82), even though the dataset was small
- Limitation: performance of ROI extraction, as classifiers can only classify extracted ROIs

Current/Future Work

- Our collaborative project continues!
	- Single deep learning detection pipeline:
		- Single network to perform *localization* and *classification*
		- More scalable approach
	- \circ Extension to other species, structures, and phenomena that can be monitored with echosounders:
		- Current: salmon, zooplankton
		- Future: suspended sediments, ocean turbulence, etc.

References and Acknowledgment

Cortes, C., & Vapnik, V. (1995). Support-vector networks. *Machine Learning*, *20*(3), 273-297.

- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, (pp. 770-778), IEEE.
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, (pp. 4700- 4708), IEEE.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, (pp. 1-9), IEEE.
- Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, Inception-ResNet and the impact of residual connections on learning. In *Thirty-First AAAI Conference on Artificial Intelligence (AAAI)*, (pp. 4278-4284).

