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» Stock assessment (i.e., forecast of abundance):
* Life-cycle modeling

* EBFM
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» Stock assessment (i.e., forecast of abundance):



Stock assessment

Current ocean research application to management is currently limited in CA Current

Dr. Brian Burke (NOAA).

Table 4.3.1 "Stoplight" table of basin-scale and local/regional conditions for smoltyears 2014-2017 and likely adult returns
in 2018 for coho and Chinook salmon that inhabit coastal Oregon and Washington waters during their marine phase.

Green/circles = "good," i.e, rank in the top third of all years examined. Yellow/squares = "intermediate,” i.e,, rank in the
middle third of all years examined. Red/diamonds = "poor," i.e, rank in the bottom third of all years examined. Courtesy of
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Figure 4.3.2 At-sea juvenile Chinook and coho salmon catches
(Logio(# km-1 + 1)) in June, 1998-2017 off Washington and Oregon.
Lines, colors, and symbols as in Fig. 1.

https://www.integratedecosystemassessment.noaa.gov/sites/default/files/2019-03/CCIEA-status-report-2018.pdf

https://www.integratedecosystemassessment.noaa.gov/regions/california-current/cc-ecosystem-components



https://www.integratedecosystemassessment.noaa.gov/sites/default/files/2019-03/CCIEA-status-report-2018.pdf
https://www.integratedecosystemassessment.noaa.gov/regions/california-current/cc-ecosystem-components

Sibling models to develop harvest rules

Harvestable adults at sea = # of jacks returning
This assumes constant maturation and natural mortality rates — Solution: Ocean sampling of older fish.
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Stock assessment

Recently, ocean covariates have been brought forward for coho assessments

The ensemble mean predictor used for the 2019 forecast was the geometric mean of the six GAM predictors:

Ensemble Mean of six forecasts based on environmental conditions and spawners.

Variables Prediction r? ocv¥

PDO Spring Transition (Julian date; t-1) Log Spawners (t-3) 67,525 0.65 0.56
PDO Multivariate ENSO Index (Oct-Dec; t-1) Upwelling (July-Sept; t-1) 67,001 0.68 0.59
PDO Spring Transition (Julian date; t-1) Multivariate ENSO Index (Oct-Dec; t-1) 63,031 0.68 0.60
PDO Upwelling (July-Sept; t-1) Sea Surface Temperature (May-Jul; t-1) 82,5622 0.64 0.52
PDO Sea Surface Height (Apr-June; t-1) Upwelling (July-Sept; t-1) 95,194 0.68 0.55
PDO Upwelling (Sept-Nov; t-1) Sea Surface Temperature (Jan; t) 52,956 0.67 0.54
Ensemble Mean 70,097 0.74 0.61
(90% prediction intervals) (32,597-152,440)

PFMC 2019, Preseason Report
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We need to consider including more process in this and previous examples




Pink salmon assessments are exploring inclusion of ocean processes

Parameter r P-value
Pink salmon abundance is estimated from juvenile at- Juvenile pink salmon abundance
CPUEca 0.78 <0.001
sea CPUE and at-sea abundance of predators. CPUE.a 074 <0.001
Seasonality -0.55 0.019
Percentage of Juvenile Pinks 0.55 0.010
Juvenile pink salmon growth and condition
Pink Salmon Size July 24 0.05 0.847
Condition Index -0.05 0.856
Energy Content -0.01 0.958
. Percent Stomach Contents -0.08 0.745
Harvest = Ln(CPUE juvs) + Pred# + env2 +...env,
Predator Indexes
Adult Coho Abundance -0.27 0.273
Adult Coho Abundance/CPUEcal -0.80 <0.001
Zooplankton standing crop
June/July Average Zooplankton Total Water Column 0.12 0.624
Local-scale physical conditions -
May 20-m Integrated Water Temperature 0.01 0.978
June 20-m Integrated Water Temperature -0.24 0.343
ey Strait Temperature Index (ISTT) -0.18 0.488
June Mixed-layer Depth -0.03 0.906
July 3-m Salinity 0.00 0.995
Basin-scale physical conditions
Pacific Decadal Oscillation (PDO, y-1) 0.01 0.983
Northern Pacific Index (NPL, y) 0.62 0.007
ENSO Multivariate Index (MEI Nov (y-1)-March () 0.25 0.326
North Pacific Gyre Oscillations 0.30 0.234
Ecosystem Indicators Rank Index (ERT) -0.83 <0.001

Wertheimer et al 2017
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Aspects of salmon life-cycle discoverable from ocean research
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Life-cycle modeling

Carry-over effects (e.g., size
at emigration, timing,
diversity). Can be studied
with early sampling.



Aspects of salmon life-cycle discoverable from ocean research

Can be studied
with early sampling.

Downstream
Rearing &
Migration

Ocean life-history transitions.
Ocean surveys of older fish
provide parameterization



Aspects of salmon life-cycle discoverable from ocean research

The ocean has influence on age
and timing of spawning and can
inform habitat management.
Sampling fish on return can be
used here.

Can be studied

with early sampling.
Downstream
Rearing &

Migration




Sensitivity analysis and management strategy evaluation O
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The key is that ocean influences were

Temp (1)1 parameterized in the context of the full life
cycle. Managerial decisions considered, such as
flow-dependent emigration size or timing, can
be evaluated properly in the context of
predation at sea.
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Managerial models that can be informed from ocean surveys

» Stock assessment (i.e., forecast of abundance)
* Life-cycle modeling

* EBFM



Agent-based models based on ocean survey results

EBFM
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Survey data is used to parameterize
ecosystem-level models where there
is need to incorporate behavior,
distribution, prey dynamics and
ocean state.

To the left is modeled growth of
salmon at sea and to the right is
modeled early survival related to
growth.
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Much of morality at sea is due to predation

EBFM
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understand the role
of predators on
salmon mortality.



Conclusion: Managerial models that can be informed from ocean surveys

Stock assessment (i.e., forecast of abundance)
* Juvenile abundance and maturation

Life-cycle modeling
e Evaluation of carry-over effects on early, at-sea salmon dynamics.

* Sampling of older fish for estimation of transitional dynamics.

EBFM
* Behavioral studies to parameterize ecosystem models, including predators, salmon and prey.
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